

|                                                                      |                                        |
|----------------------------------------------------------------------|----------------------------------------|
| <b>E<br/>M<br/>E<br/>R<br/>G</b>                                     | <b>LIST OF WARNING MESSAGES</b>        |
|                                                                      | <b>AWG TEST PROCEDURE</b>              |
|                                                                      | <b>EMERGENCY AUTOROTATION</b>          |
|                                                                      | <b>FIRE &amp; SMOKE</b>                |
|                                                                      | <b>DRIVE SYSTEM</b>                    |
|                                                                      | <b>ENGINE</b>                          |
|                                                                      | <b>ELECTRICAL SYSTEM</b>               |
| <b>M<br/>A<br/>L<br/>F<br/>U<br/>N<br/>C<br/>T<br/>I<br/>O<br/>N</b> | <b>LANDING GEAR &amp; VARIOUS</b>      |
|                                                                      | <b>LIST OF CAUTION MESSAGES</b>        |
|                                                                      | <b>ENGINE</b>                          |
|                                                                      | <b>ELECTRICAL SYSTEM</b>               |
|                                                                      | <b>HYDRAULIC SYSTEM</b>                |
|                                                                      | <b>DRIVE SYSTEM</b>                    |
|                                                                      | <b>FUEL SYSTEM</b>                     |
|                                                                      | <b>COMMUNICATION SYSTEM</b>            |
|                                                                      | <b>AUTOMATIC FLIGHT CONTROL SYSTEM</b> |
|                                                                      | <b>INTEGRATED DISPLAY SYSTEM</b>       |
|                                                                      | <b>EFIS SYSTEM</b>                     |
|                                                                      | <b>VARIOUS</b>                         |

## INTRODUCTION

The majority of the Emergency and Malfunction procedures that follow are presented in the form of logic trees (flow charts). These logic trees have been formulated based on analysis and test of the cockpit indications that would be available to the flight crew following the emergencies/malfunctions that are included in this QRH. For complex emergencies/malfunctions, cockpit indications coupled with the answers to "Yes/No" type questions (as indicated on the charts) should enable the flight crew to analyze the type of emergency/malfunction that has occurred, the branch of the "tree" that should be followed and the corrective action that should be taken.

In order to analyze some types of emergencies/malfunctions, answers to "+", "IF", "AND" and "OR" statements may be required. In these cases, the statements are presented in bold text ("+", "IF", "AND", "OR") to be more conspicuous. It is emphasized that attention should be paid to this symbology to avoid a mistake in the emergency/malfunction analysis and subsequent incorrect crew action. **Required** crew actions are also presented in bold type

## DEFINITIONS

### SAFE OEI FLIGHT

In general, safe OEI flight is defined to mean flight with one engine inoperative and:

1. a sustainable airspeed of not less than 45 KIAS,
2. the ability to obtain a positive rate of climb at acceptable power levels and
3. an altitude which provides sufficient clearance from the ground / obstacles / clouds so that required manoeuvring can be reasonably achieved.

## EMERGENCY LANDING GUIDANCE

Throughout this QRH, three terms are used to indicate the degree of urgency with which a landing must be effected. In cases where extremely hazardous landing conditions exist such as dense bush, heavy seas or mountainous terrain, the final decision as to the urgency of landing must be made by the pilot.

### LAND IMMEDIATELY

Land at once, even if it means landing on water. Landing is the highest priority. The primary consideration is to assure the survival of the occupants. The consequences of continued flight are likely to be more hazardous than those of landing at a site normally considered unsuitable.

### LAND AS SOON AS POSSIBLE

Do not continue flight for longer than is necessary to achieve a safe and unhurried landing at the nearest site.

### LAND AS SOON AS PRACTICABLE

Land at the nearest aviation location or, if there is none reasonably close, at a safe landing site selected for subsequent convenience. Extended flight beyond the nearest approved landing area is not recommended.

## PILOT ALERTNESS LEVEL

The level of alertness required by the pilot is a function of the flight regime. Throughout this QRH, the following terms are used:

- 1. Fly Attentive:**  
—Pilot to maintain close control of the flight path using hands-on when required.
- 2. Fly Manually:**  
—Pilot directly controls the flight path using hands-on.

**This Page Is Intentionally Left Blank**

|                                  |   |
|----------------------------------|---|
| INTRODUCTION .....               | 2 |
| DEFINITIONS .....                | 2 |
| SAFE OEI FLIGHT .....            | 2 |
| EMERGENCY LANDING GUIDANCE ..... | 3 |
| PILOT ALERTNESS LEVEL .....      | 3 |

## EMERGENCY PROCEDURES

|                                                                                      |           |
|--------------------------------------------------------------------------------------|-----------|
| <b>WARNING MESSAGES .....</b>                                                        | <b>5</b>  |
| CAS WARNING MESSAGES .....                                                           | 7         |
| AWG TEST PROCEDURE .....                                                             | 8         |
| <b>EMERGENCY AUTOROTATION .....</b>                                                  | <b>9</b>  |
| EMERGENCY AUTOROTATION PROCEDURE .....                                               | 11        |
| <b>FIRE &amp; SMOKE .....</b>                                                        | <b>13</b> |
| ENGINE FIRE ON GROUND .....                                                          | 15        |
| ENGINE FIRE IN FLIGHT .....                                                          | 16        |
| SMOKE IN CABIN, TOXIC FUMES, ETC. .....                                              | 18        |
| <b>TRANSMISSION &amp; ROTORS .....</b>                                               | <b>19</b> |
| MAIN GEARBOX OIL PRESSURE LOW .....                                                  | 21        |
| MAIN GEARBOX OIL TEMPERATURE HIGH .....                                              | 22        |
| ROTOR UNDER SPEED .....                                                              | 23        |
| ROTOR OVERSPEED .....                                                                | 24        |
| ROTOR BRAKE FAILURE .....                                                            | 25        |
| MAIN ROTOR CONTROLS SEIZURE .....                                                    | 26        |
| TAIL ROTOR DRIVE FAILURE .....                                                       | 26        |
| TAIL ROTOR DRIVE FAILURE IN HOVER .....                                              | 27        |
| TAIL ROTOR DRIVE FAILURE IN FORWARD FLIGHT,<br>POWER-ON .....                        | 28        |
| TAIL ROTOR DRIVE FAILURE IN FORWARD FLIGHT,<br>LOW POWER OR POWER-OFF .....          | 29        |
| TAIL ROTOR DRIVE FAILURE IN FORWARD FLIGHT,<br>LOW POWER OR POWER-OFF (CONT'D) ..... | 30        |
| TAIL ROTOR CONTROL FAILURE IN HOVER .....                                            | 31        |
| TAIL ROTOR CONTROL FAILURE IN FORWARD<br>FLIGHT .....                                | 31        |
| TAIL ROTOR CONTROL SEIZURE IN HOVER .....                                            | 32        |
| TAIL ROTOR CONTROL SEIZURE IN FORWARD<br>FLIGHT .....                                | 32        |
| <b>ENGINE .....</b>                                                                  | <b>33</b> |

|                                                                           |           |
|---------------------------------------------------------------------------|-----------|
| ENGINE FAILURE .....                                                      | 35        |
| DOUBLE ENGINE FAILURE .....                                               | 36        |
| ENGINE SHUTDOWN IN AN EMERGENCY .....                                     | 36        |
| EMERGENCY/POST CRASH SHUTDOWN AND<br>EGRESS .....                         | 37        |
| ENGINE OIL PRESSURE .....                                                 | 38        |
| ENGINE ECU FAIL .....                                                     | 39        |
| <b>ELECTRICAL .....</b>                                                   | <b>41</b> |
| DOUBLE DC GENERATOR FAILURE .....                                         | 43        |
| DOUBLE DC GENERATOR FAILURE (CONT'D) .....                                | 44        |
| DOUBLE DC GENERATOR FAILURE<br>(EXTENDED FLIGHT ENDURANCE) .....          | 45        |
| DOUBLE DC GENERATOR FAILURE<br>(EXTENDED FLIGHT ENDURANCE) (CONT'D) ..... | 46        |
| DOUBLE DC GENERATOR FAILURE<br>(EXTENDED FLIGHT ENDURANCE) (CONT'D) ..... | 47        |
| SERVICES RETAINED DURING DOUBLE DC<br>GENERATOR FAILURE .....             | 48        |
| SERVICES LOST DURING DOUBLE DC GENERATOR<br>FAILURE .....                 | 49        |
| BATTERY DISCHARGING .....                                                 | 50        |
| BATTERY DISCHARGING (CONT'D) .....                                        | 51        |
| BATTERY HOT .....                                                         | 51        |
| ELECTRICAL FIRE / SMOKE (IN FLIGHT) .....                                 | 52        |
| ELECTRICAL FIRE / SMOKE (IN FLIGHT) (CONT'D) .....                        | 53        |
| <b>LANDING GEAR &amp; VARIOUS .....</b>                                   | <b>55</b> |
| LANDING GEAR FAILS TO LOCK DOWN<br>(TOTAL OR PARTIAL FAILURE) .....       | 57        |
| EMERGENCY DOWN LANDING GEAR PROCEDURE .....                               | 58        |
| STATIC PORT OBSTRUCTION .....                                             | 59        |
| FLIGHT IN THUNDERSTORM - LIGHTNING STRIKE .....                           | 60        |

## MALFUNCTION PROCEDURES

|                            |           |
|----------------------------|-----------|
| CAUTION MESSAGES .....     | 61        |
| VOICE ONLY CAUTIONS .....  | 66        |
| <b>ENGINE .....</b>        | <b>67</b> |
| COMPRESSOR STALL .....     | 69        |
| UNUSUAL ENGINE NOISE ..... | 70        |

|                                               |    |
|-----------------------------------------------|----|
| ATTEMPTED TAKE-OFF WITH ONE ENGINE IN IDLE .. | 70 |
| ENGINE OIL TEMPERATURE .....                  | 71 |
| ENGINE OIL CHIP                               |    |
| (HELICOPTERS NOT EQUIPPED WITH PULSED CHIP    |    |
| DETECTOR SYSTEM P/N 109-0811-48) .....        | 72 |
| ENGINE OIL CHIP                               |    |
| (HELICOPTERS EQUIPPED WITH PULSED CHIP        |    |
| DETECTOR SYSTEM P/N 109-0811-48) .....        | 73 |
| ENGINE POWER LEVER REMOTE CONTROL FAIL ..     | 74 |
| ENGINE POWER LEVER POSITION .....             | 74 |
| ENGINE MODE SELECT SWITCH FAILURE .....       | 75 |
| ENGINE DRIVE SHAFT FAILURE .....              | 76 |
| ENGINE POWER TURBINE OVERSPEED .....          | 77 |
| ENGINE POWER TURBINE OVERSPEED DETECT         |    |
| FAILURE .....                                 | 77 |
| N2 OVERSPEED CONTROL CIRCUIT TEST FAILURE ..  | 78 |
| OEI 2.5 MIN RATING OUTSIDE LIMITS .....       | 78 |
| DATA COLLECTION UNIT MALFUNCTION .....        | 78 |
| ENGINE CONTROL UNIT - MAINTENANCE             |    |
| REQUIRED .....                                | 79 |
| ENGINE CONTROL UNIT - LOSS OF DATA .....      | 79 |
| ENGINE HOT START .....                        | 80 |
| TOT LIMITER MALFUNCTION .....                 | 81 |
| TORQUE LIMITER MALFUNCTION .....              | 82 |
| MGT MISMATCH .....                            | 83 |
| ROTOR SPEED SELECTOR MALFUNCTION .....        | 84 |
| ENGINE FIRE DETECTOR SYSTEM FAILURE .....     | 85 |
| FIRE EXTINGUISHER BOTTLE DISCHARGED .....     | 85 |
| ENGINE RESTART IN FLIGHT PROCEDURE .....      | 86 |
| IN FLIGHT RESTART PROCEDURE IN AUTO MODE ..   | 86 |
| IN FLIGHT RESTART PROCEDURE IN MANUAL         |    |
| MODE .....                                    | 87 |
| ABORTED ENGINE START PROCEDURE .....          | 89 |
| AUTO TO MANUAL MODE TRANSFER .....            | 90 |
| ENGINE START IN MANUAL MODE (ON GROUND) ..    | 91 |
| ENGINE SHUTDOWN IN MANUAL MODE .....          | 93 |
| ENGINE OPERATION IN MANUAL MODE .....         | 94 |
| ONE ENGINE IN MANUAL MODE AND ONE IN AUTO     |    |
| MODE .....                                    | 94 |

|                                                                                                                |            |
|----------------------------------------------------------------------------------------------------------------|------------|
| BOTH ENGINES IN MANUAL MODE .....                                                                              | 94         |
| ENGINE POWER LEVER (PLA) JAMMED                                                                                |            |
| PROCEDURE .....                                                                                                | 97         |
| <b>ELECTRICAL .....</b>                                                                                        | <b>99</b>  |
| DC GENERATOR CONTROL .....                                                                                     | 101        |
| BATTERY OFF .....                                                                                              | 102        |
| EXTERNAL POWER ON .....                                                                                        | 103        |
| FAILURE OF A GENERATOR .....                                                                                   | 104        |
| BUS TIE OPEN .....                                                                                             | 105        |
| GENERATOR OVERLOAD .....                                                                                       | 106        |
| INVERTER FAILURE .....                                                                                         | 106        |
| <b>HYDRAULIC SYSTEM .....</b>                                                                                  | <b>107</b> |
| SERVO HYDRAULIC SYSTEM N°1 MALFUNCTION .....                                                                   | 109        |
| SERVO HYDRAULIC SYSTEM N°2 MALFUNCTION .....                                                                   | 110        |
| JAMMING OF A MAIN ROTOR SERVO VALVE .....                                                                      | 111        |
| TAIL ROTOR SERVO VALVE JAMMING .....                                                                           | 112        |
| NORMAL UTILITY HYDRAULIC PRESSURE LOW .....                                                                    | 113        |
| EMERGENCY UTILITY HYDRAULIC PRESSURE<br>LOW .....                                                              | 114        |
| NORMAL UTILITY HYDRAULIC SYSTEM<br>CHARGING .....                                                              | 115        |
| EMERGENCY UTILITY HYDRAULIC SYSTEM<br>CHARGING .....                                                           | 115        |
| <b>DRIVE SYSTEM .....</b>                                                                                      | <b>117</b> |
| MAIN TRANSMISSION OVERTORQUE .....                                                                             | 119        |
| MAIN TRANSMISSION CHIP<br>(HELICOPTERS NOT EQUIPPED WITH PULSED CHIP<br>DETECTOR SYSTEM P/N 109-0811-48) ..... | 119        |
| MAIN TRANSMISSION CHIP<br>(HELICOPTERS EQUIPPED WITH PULSED CHIP<br>DETECTOR SYSTEM P/N 109-0811-48) .....     | 120        |
| TAIL GEARBOX CHIP<br>(HELICOPTERS NOT EQUIPPED WITH PULSED CHIP<br>DETECTOR SYSTEM P/N 109-0811-48) .....      | 121        |
| TAIL GEARBOX CHIP<br>(HELICOPTERS EQUIPPED WITH PULSED CHIP<br>DETECTOR SYSTEM P/N 109-0811-48) .....          | 122        |
| ROTOR BRAKE SYSTEM DEGRADED .....                                                                              | 123        |
| <b>FUEL SYSTEM .....</b>                                                                                       | <b>125</b> |

|                                                                                                |            |
|------------------------------------------------------------------------------------------------|------------|
| FUEL LOW .....                                                                                 | 127        |
| FUEL PRESSURE LOW .....                                                                        | 128        |
| FUEL PUMP FAILED AND AIRFRAME FUEL FILTER CLOGGED .....                                        | 129        |
| AIRFRAME FUEL FILTER CLOGGED .....                                                             | 129        |
| ENGINE FUEL FILTER CLOGGED .....                                                               | 130        |
| FUEL LOW SENSOR FAILURE .....                                                                  | 130        |
| FUEL DRAIN VALVE OPEN .....                                                                    | 131        |
| <b>COMMUNICATION SYSTEM .....</b>                                                              | <b>133</b> |
| AURAL WARNING SYSTEM FAILURE .....                                                             | 135        |
| PILOT'S OR COPILOT'S ICS FAILURE .....                                                         | 135        |
| MASTER AVIONICS SWITCH FAILURE .....                                                           | 136        |
| RADIO TUNING UNIT FAILURE .....                                                                | 137        |
| <b>AUTOMATIC FLIGHT CONTROL SYSTEM .....</b>                                                   | <b>139</b> |
| ATTITUDE MODE OFF .....                                                                        | 141        |
| AUTOPILOT CAS FAIL .....                                                                       | 141        |
| AUTOPILOT AHRS FAIL .....                                                                      | 142        |
| AP DEGRADED<br>(NOT APPLICABLE TO EDU P/N 109-0900-76-2A05<br>AND SUBS) .....                  | 143        |
| AP STDBY FAIL<br>(APPLICABLE TO EDU P/N 109-0900-76-2A05<br>AND SUBS) .....                    | 144        |
| AUTOPILOT TEST FAIL .....                                                                      | 145        |
| AFCS PFT PARTIALLY COMPLETED<br>(NOT APPLICABLE TO EDU P/N 109-0900-76-2A05<br>AND SUBS) ..... | 146        |
| AFCS PFT PARTIALLY COMPLETED<br>(APPLICABLE TO EDU P/N 109-0900-76-2A05<br>AND SUBS) .....     | 147        |
| AP CHANNEL FAILURE .....                                                                       | 148        |
| APMS PANEL FAIL .....                                                                          | 149        |
| MISTRIM .....                                                                                  | 149        |
| PITCH TRIM FAIL .....                                                                          | 150        |
| ROLL TRIM FAIL .....                                                                           | 150        |
| YAW TRIM FAIL .....                                                                            | 151        |
| COLLECTIVE TRIM FAIL .....                                                                     | 151        |
| AUTOPILOT OFF .....                                                                            | 152        |
| AUTOPILOT FAIL .....                                                                           | 153        |

---

|                                                                                                    |            |
|----------------------------------------------------------------------------------------------------|------------|
| AUTOPILOT HOT .....                                                                                | 154        |
| PITCH AUTOPILOT FAIL .....                                                                         | 155        |
| ROLL AUTOPILOT FAIL .....                                                                          | 155        |
| YAW AUTOPILOT FAIL .....                                                                           | 156        |
| AFCS OSCILLATORY MALFUNCTION .....                                                                 | 157        |
| <b>INTEGRATED DISPLAY SYSTEM .....</b>                                                             | <b>159</b> |
| ELECTRONIC DISPLAY UNIT 1 COMPLETE<br>FAILURE .....                                                | 161        |
| ELECTRONIC DISPLAY UNIT 1 DEGRADATION .....                                                        | 162        |
| ELECTRONIC DISPLAY UNIT 2 COMPLETE FAILURE .....                                                   | 163        |
| ELECTRONIC DISPLAY UNIT 2 DEGRADATION .....                                                        | 164        |
| MISCOMPARE OF DAU PRIMARY PARAMETERS .....                                                         | 165        |
| INCORRECT DAU HARDWARE CONFIGURATION<br>(APPLICABLE TO EDU P/N 109-0900-76-2A05 AND<br>SUBS) ..... | 165        |
| <b>EFIS .....</b>                                                                                  | <b>167</b> |
| EFIS CAUTION ANNUNCIATION CAPTIONS .....                                                           | 171        |
| FAILURE OF PILOT'S PFD .....                                                                       | 174        |
| FAILURE OF COPILOT'S PFD .....                                                                     | 175        |
| REBOOT OF PILOT'S (OR COPILOT'S) MFD .....                                                         | 176        |
| MFD BACKGROUND NOISE .....                                                                         | 177        |
| LOSS OF DATA FROM AIR DATA COMPUTER .....                                                          | 178        |
| LOSS OF DATA FROM ATTITUDE HEADING<br>REFERENCE SYSTEM .....                                       | 179        |
| LOSS OF HEADING<br>(FOR EFIS SOFTWARE VERSIONS UP TO 8.0E<br>INCLUDED) .....                       | 180        |
| LOSS OF HEADING<br>(FOR EFIS SOFTWARE VERSIONS 8.0H OR<br>LATER) .....                             | 181        |
| ALTITUDE DATA DISCREPANCY .....                                                                    | 182        |
| PITCH AND ROLL ATTITUDE DATA DISCREPANCY ..                                                        | 182        |
| IDU OVERTEMPERATURE .....                                                                          | 183        |
| SINGLE GPS SYSTEM FAILURE .....                                                                    | 184        |
| DOUBLE GPS SYSTEM FAILURE .....                                                                    | 185        |
| GPS LOSS OF INTEGRITY .....                                                                        | 186        |
| GPS DATA DISCREPANCY .....                                                                         | 187        |
| EXCESSIVE GLIDE SLOPE DISCREPANCY .....                                                            | 187        |
| HEADING DATA DISCREPANCY .....                                                                     | 188        |

---

|                                                                                    |            |
|------------------------------------------------------------------------------------|------------|
| AIRSPEED DATA DISCREPANCY .....                                                    | 189        |
| LOSS OF IDU POWER REDUNDANCY .....                                                 | 189        |
| IDU DISCREPANCY ON PILOT SIDE .....                                                | 190        |
| IDU DISCREPANCY ON COPILOT SIDE .....                                              | 191        |
| EXCESSIVE LOCALISER DISCREPANCY .....                                              | 192        |
| LOSS OF OAT DATA .....                                                             | 192        |
| RADIO ALTIMETER DATA LOSS .....                                                    | 193        |
| SCC FAILURE .....                                                                  | 194        |
| ADS-B TRANSPONDER FAILURE (IF INSTALLED) ....                                      | 194        |
| <b>VARIOUS .....</b>                                                               | <b>195</b> |
| DOOR OPEN .....                                                                    | 197        |
| BAGGAGE COMPARTMENT DOOR OPEN .....                                                | 198        |
| PARKING BRAKE ON<br>(NOT APPLICABLE TO EDU P/N 109-0900-76-2A05<br>AND SUBS) ..... | 198        |
| PITOT HEAT FAILED .....                                                            | 199        |
| COCKPIT FAN FAILED .....                                                           | 199        |
| EFIS FANS FAILED .....                                                             | 200        |
| LANDING GEAR RETRACTED .....                                                       | 200        |
| LANDING GEAR FAILS TO RAISE .....                                                  | 201        |
| AIR DATA UNIT FAILURE .....                                                        | 202        |
| ATTITUDE AND HEADING REFERENCE SYSTEM<br>FAILURE .....                             | 203        |
| VNE EXCEEDED .....                                                                 | 204        |
| DEVIATION FROM SELECTED ALTITUDE/HEIGHT ....                                       | 204        |
| DEVIATION FROM ABOVE TO BELOW MIN<br>ALTITUDE .....                                | 204        |

---

**This Page Is Intentionally Left Blank**

**WARNING  
MSGs**

## **WARNING MESSAGES**

**CAS WARNING MESSAGES**

**7**

**AWG TEST PROCEDURE**

**8**

**This Page Is Intentionally Left Blank**

## CAS WARNING MESSAGES

| CAS Caption                         | Voice Warning    | Audio Tone  | Emergency/System State                                                                                                                              |
|-------------------------------------|------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| ROTOR LOW<br>(page 23)              | ROTOR LOW        | Tone + Horn | Rotor speed below 96% (Power-ON).<br>Rotor speed below 95% (Power-OFF).<br>When NR reaches 80%, voice warning, audio tone and horn are deactivated. |
| ROTOR HIGH<br>(page 24)             | ROTOR HIGH       | Tone        | Rotor speed above 105% (Power-ON).<br>Rotor speed above 110% (Power-OFF).                                                                           |
| ENG 1 (2) OUT<br>(page 35)          | ENGINE 1(2) OUT  | Tone        | Engine #1(2) N1 abnormally low (N1 35% and below). Probable engine failure.                                                                         |
| ENG 1 (2) FIRE<br>(page 15/page 16) | ENGINE 1(2) FIRE | Tone        | Fire in engine #1(2) compartment.                                                                                                                   |
| #1(2) ECU FAIL<br>(page 39)         | WARNING          | Tone        | Critical hardware failure of the #1(2) engine electronic control unit (ECU). Automatic reversion of engine #1(2) to manual mode.                    |
| #1(2) OIL PRES<br>(page 38)         | WARNING          | Tone        | Oil pressure in associated engine outside the operating range.                                                                                      |
| XMSN OIL PRES<br>(page 21)          | WARNING          | Tone        | Low pressure in transmission lubricating system. Oil pressure below 30 psi.                                                                         |
| XMSN OIL HOT<br>(page 22)           | WARNING          | Tone        | Overheating of transmission lubricating system. Oil temperature above 120 °C.                                                                       |
| ROTOR BRK ON<br>(page 25)           | WARNING          | Tone        | Rotor brake in operation. Braking pads of rotor brake not in fully retracted position.                                                              |
| BATT HOT<br>(page 51)               | WARNING          | Tone        | Battery overheating.                                                                                                                                |
| BATT DISCH<br>(page 50)             | WARNING          | Tone        | Battery discharging. Output voltage of both generators below 27.0 V (± 0.5 V).                                                                      |
| ELECTRICAL<br>(page 43/<br>page 45) | WARNING          | Tone        | Failure of both DC generators.                                                                                                                      |

**WARNING  
MSG'S****AWG TEST PROCEDURE**

The AWG test function can be initiated by holding the AWG switch in the TEST position. The aural message "TEST OK" will be generated to indicate a successful test. Maintaining the TEST position for more than 6 seconds, will generate the entire voice warning sequence in the following priority:

- Tone 1 "ROTOR LOW"
- Tone 2 "ENGINE ONE OUT"
- Tone 2 "ENGINE TWO OUT"
- Tone 3 "FIRE ENGINE ONE FIRE"
- Tone 3 "FIRE ENGINE TWO FIRE"
- Tone 4 "WARNING"
- Tone 4 "ROTOR HIGH"
- Tone 4 "AUTOPILOT"
- Tone 4 "ENGINE IDLE"
- Tone 5 "OVERTORQUE"
- Tone 5 "AIRSPEED"
- Tone 6 "LANDING GEAR"
- Tone 6 "DECISION HEIGHT"
- Tone 7 "TWO HUNDRED FEET"
- Tone 7 "ALTITUDE"
- Tone 8 Tone (for autopilot)

---

**SECTION END**

---

**AUTOROT**

## **EMERGENCY AUTOROTATION**

### **EMERGENCY AUTOROTATION PROCEDURE**

**11**

**AUTOROT**

**This Page Is Intentionally Left Blank**

**EMERGENCY AUTOROTATION PROCEDURE**

1. Collective pitch — Reduce to enter autorotation.
2. Attitude — Adjust as required to obtain and maintain desired airspeed.

**Note**

An airspeed of  $V_y$  and 95% RPM ensures the minimum rate of descent in autorotation.

3. Collective pitch — Adjust as required to maintain rotor speed within limits (95% to 110% NR).
4. Landing gear — DOWN.
5. Parking brake — Check OFF.
6. Landing site — Select and manoeuvre into wind.
7. Briefing — Brief cabin crew and occupants.
8. Harness — Tight.

If time and conditions permits:

- ENG MODE switches — Both OFF.
- FUEL PUMP switches — Both OFF.
- FUEL VALVE switches — Both CLOSED.
- XPND / RADIO — Set emergency / transmit distress call.

9. Flare — At approximately 100 to 70 ft AGL, depending on the weight, initiate a flare, at approximately 10 deg per second, to a maximum 30 deg nose-up angle to reduce the rate of descent ( $500 \pm 100$  ft/min) and the forward speed ( $30 \pm 10$  KIAS).
10. Collective pitch — Adjust, as required, to maintain NR at 110% maximum during the flare.
11. Pitch attitude / Collective pitch — At approximately 10 ft AGL, reduce pitch attitude to a near level attitude. As the helicopter settles, apply collective pitch, as required, at approximately 4 ft to cushion touchdown.

AUTOROT

## AUTOROT

12. Touchdown airspeed — As required by surface characteristics. If terrain permits, land with forward speed.
13. Collective pitch — Following touchdown, lower promptly.
14. Toe brakes — Apply as required.
15. Shutdown — Execute the **EMERGENCY/POST CRASH SHUTDOWN AND EGRESS** procedure Page 35.

**Note**

Refer to Section "LIMITATIONS" for FLIGHT HANDLING CHARACTERISTICS in AUTOROTATIVE DESCENT.

---

**SECTION END**

---

## **FIRE & SMOKE**

**FIRE &  
SMOKE**

**ENGINE FIRE ON GROUND** 15

---

**ENGINE FIRE IN FLIGHT** 16

---

**SMOKE IN CABIN, TOXIC FUMES, ETC.** 18

FIRE &  
SMOKE

**This Page Is Intentionally Left Blank**

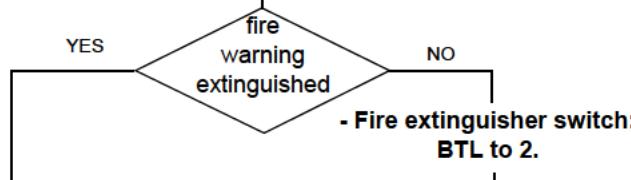
## ENGINE FIRE ON GROUND

**ENG 1(2) FIRE**

+

Audio Tone and Voice Warning  
"ENGINE 1(2) FIRE"

- affected engine power lever grip illuminated.
- affected engine control panel FIRE light illuminated.
- affected engine Eng 1(2) S/OFF FIRE pushbutton FIRE wording illuminated on fire extinguisher panel.


- Confirm engine fire.

- Parking brake: ON.
- ENG MODE 1 & 2 switches: OFF.
- FUEL PUMP 1 & 2 switches: OFF.
- FUEL VALVE 1 & 2 switches: CLOSED.
- XFEED VALVE switch: CLOSED.

On affected engine:

- S/OFF FIRE pushbutton: Lift appropriate guard and press pushbutton (once only). S/OFF wording illuminates.

Fire extinguisher switch: BTL to 1.



Carry out **EMERGENCY/POST CRASH  
SHUTDOWN AND EGRESS**  
procedure Page 37.

---

END

---

FIRE &  
SMOKE

## ENGINE FIRE IN FLIGHT

FIRE &  
SMOKE

ENG 1(2) FIRE

+

Audio Tone and Voice Warning  
"ENGINE 1(2) FIRE"

- affected engine power lever grip illuminated.
- affected engine control panel FIRE light illuminated.
- affected engine ENG 1(2) S/OFF FIRE pushbutton FIRE wording illuminated on fire extinguisher panel.

Achieve Safe OEI Flight

On affected engine:  
**ENG MODE** switch: **IDLE**.

Confirm engine fire.

On affected engine:

- **ENG MODE** switch: **OFF**.
- **FUEL PUMP** switch: **OFF**.
- **FUEL VALVE** switch: **CLOSED**.
- **XFEED VALVE** switch: **CLOSED**.
- **S/OFF FIRE** pushbutton: Lift appropriate guard and press pushbutton (once only).  
S/OFF wording illuminates.
- **Fire extinguisher** switch: **BTL to 1**.
- **GEN** switch: **OFF**.

Continued Next Page

FIRE &  
SMOKE

Continuation from previous page

YES

fire  
warning  
extinguished

NO

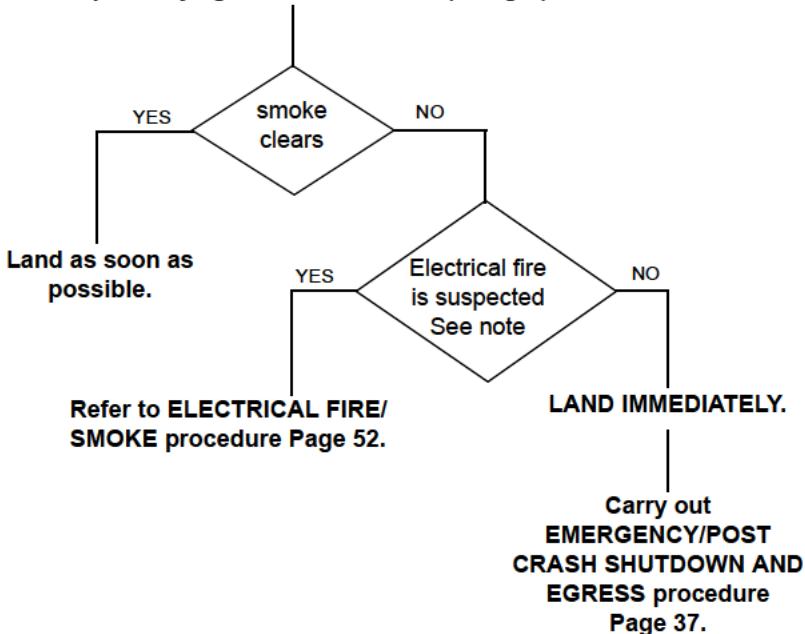
Fire extinguisher switch: BTL to 2.

YES

fire  
warning  
extinguished

NO

**CAUTION**Do not attempt to restart  
the engine.LAND  
IMMEDIATELY.Land as soon as  
possible.Carry out **EMERGENCY/POST CRASH  
SHUTDOWN AND EGRESS**  
procedure Page 37.


---

END

---

## SMOKE IN CABIN, TOXIC FUMES, ETC.

- Front ventilation ports: Open.
- VENT CKPT switch: Set to HIGH.
- Sliding windows (if installed): Open.
- ECS / Heater (if installed) : Check OFF.
- Cockpit utility light : ON (at night).

**Note**

Electrical fire is suspected when there are visible signs of smoke in cockpit, with distinct acrid smell of burning insulation.

---

**SECTION END**

---

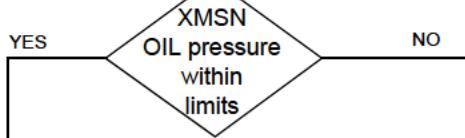
# TRANSMISSION & ROTORS

DRIVE

|                                                                           |           |
|---------------------------------------------------------------------------|-----------|
| <b>MAIN GEARBOX OIL PRESSURE LOW</b>                                      | <b>21</b> |
| <b>MAIN GEARBOX OIL TEMPERATURE HIGH</b>                                  | <b>22</b> |
| <b>ROTOR UNDER SPEED</b>                                                  | <b>23</b> |
| <b>ROTOR OVERSPEED</b>                                                    | <b>24</b> |
| <b>ROTOR BRAKE FAILURE</b>                                                | <b>25</b> |
| <b>MAIN ROTOR CONTROLS SEIZURE</b>                                        | <b>26</b> |
| <b>TAIL ROTOR DRIVE FAILURE IN HOVER</b>                                  | <b>27</b> |
| <b>TAIL ROTOR DRIVE FAILURE IN FORWARD FLIGHT, POWER-ON</b>               | <b>28</b> |
| <b>TAIL ROTOR DRIVE FAILURE IN FORWARD FLIGHT, LOW POWER OR POWER-OFF</b> | <b>29</b> |
| <b>TAIL ROTOR CONTROL FAILURE IN HOVER</b>                                | <b>31</b> |

|                                                     |           |
|-----------------------------------------------------|-----------|
| <b>TAIL ROTOR CONTROL FAILURE IN FORWARD FLIGHT</b> | <b>31</b> |
| <b>TAIL ROTOR CONTROL SEIZURE IN HOVER</b>          | <b>32</b> |
| <b>TAIL ROTOR CONTROL SEIZURE IN FORWARD FLIGHT</b> | <b>32</b> |

DRIVE


## MAIN GEARBOX OIL PRESSURE LOW

**XMSN OIL PRES** + Audio Tone and Voice Message  
"WARNING"

Transmission oil pressure below minimum limit.

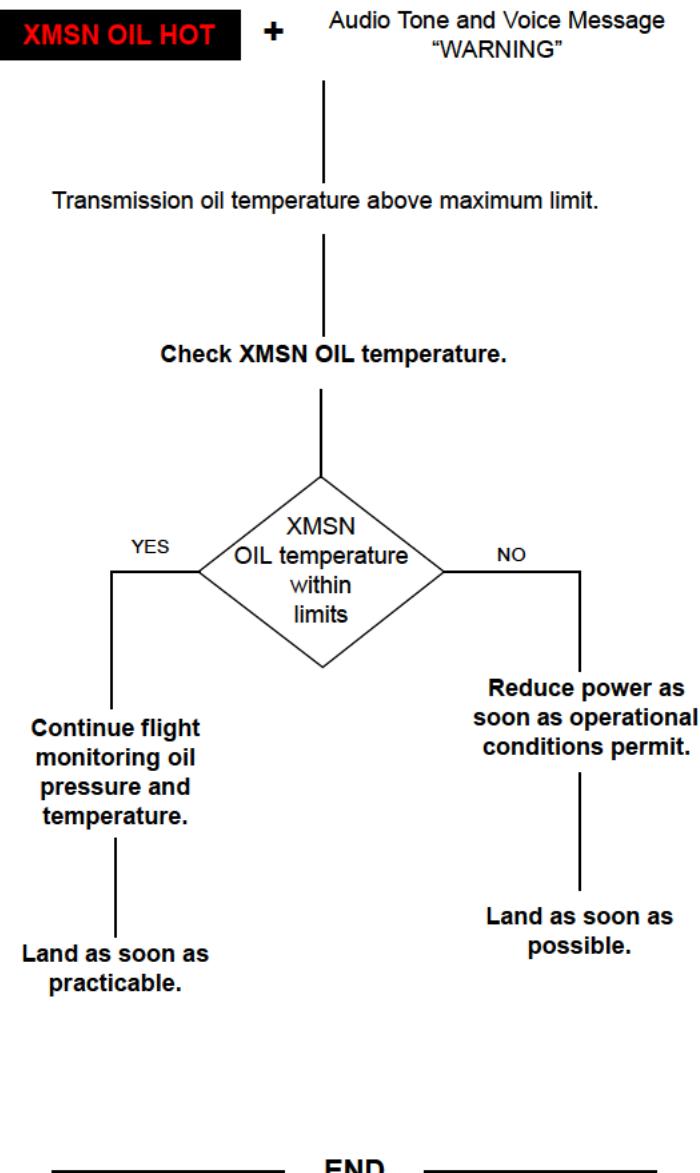
DRIVE

Check XMSN OIL pressure.

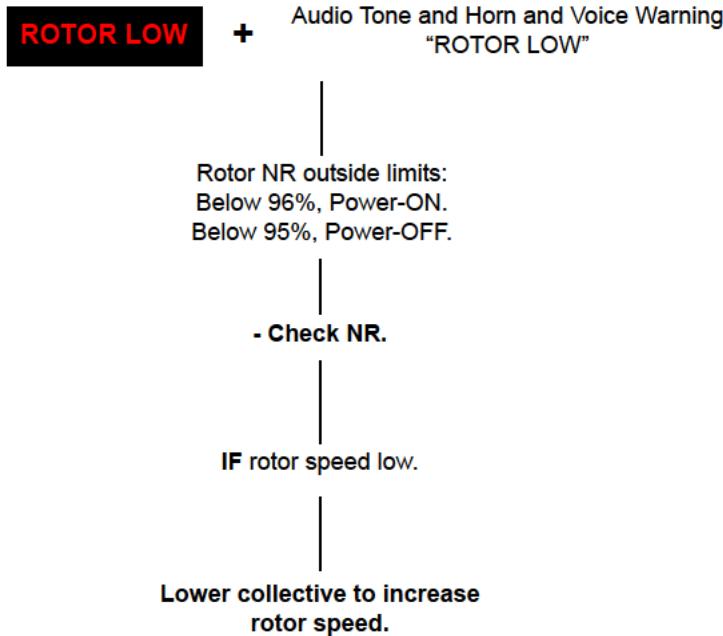


Continue flight monitoring oil pressure and temperature.

Reduce power as soon as operational conditions permit.


Land as soon as practicable.

Land as soon as possible.


END

## MAIN GEARBOX OIL TEMPERATURE HIGH

DRIVE



## ROTOR UNDER SPEED



DRIVE

END

## ROTOR OVERSPEED

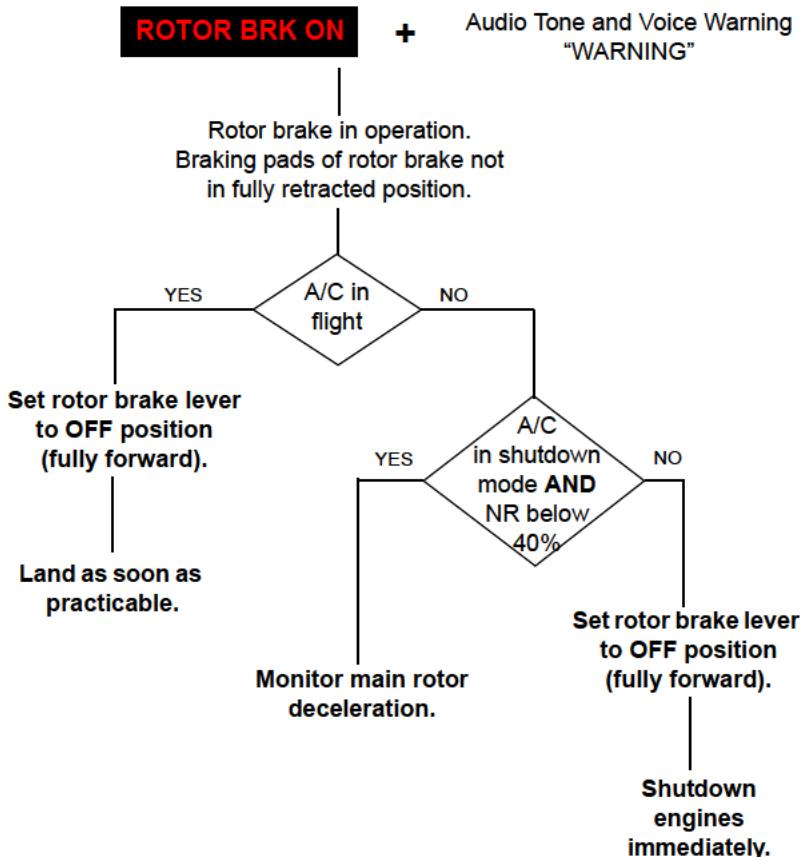
DRIVE

**ROTOR HIGH**

+

Audio Tone and Voice Warning  
"ROTOR HIGH"

Rotor NR outside limits:  
Above 105%, Power-ON.  
Above 110%, Power-OFF.


Check NR.

IF rotor speed high.

Raise collective to decrease  
rotor speed.

END

## ROTOR BRAKE FAILURE



DRIVE

END

## MAIN ROTOR CONTROLS SEIZURE

## WARNING

If a seizure occurs in the flying controls, greater forces will be required to operate the controls. A reduction in the available control ranges may result and, in this situation, the low speed flight envelope may be restricted.

## DRIVE

If the seizure occurred at an airspeed greater than 25 KIAS, the helicopter should be landed into the wind as soon as possible using a running landing procedure and a touchdown speed of approximately 25 KIAS.

If the airspeed is less than 25 KIAS, carry out a running landing at the speed at which the seizure occurred. If the helicopter is in a hover, land vertically.

## TAIL ROTOR DRIVE FAILURE

In all three following cases these indications are present and determine a definite tail rotor drive failure:

- Attempt to maintain flight condition, may require unusual pedal position.
- Pedal input does NOT produce any sustained helicopter response.
- Possible noise and vibration from the aft fuselage area.

Although there might be some helicopter behaviour differences, the general procedure to bring the helicopter to a safe landing are basically the same in all flight conditions.

Following a tail rotor drive failure, safe landing can be achieved almost solely in autorotation. Even though in some circumstances, powered flight can be maintained or re-established through a correct combination of airspeed and power setting, autorotation must always be re-entered for a safe landing.

## CAUTION

Powered run-on landing should not be attempted as airspeed required to maintain directional control is too high compared with landing gear limitations.

## TAIL ROTOR DRIVE FAILURE IN HOVER

Collective: Lower immediately.

If time and conditions permit

- Engine power levers: Both OFF.

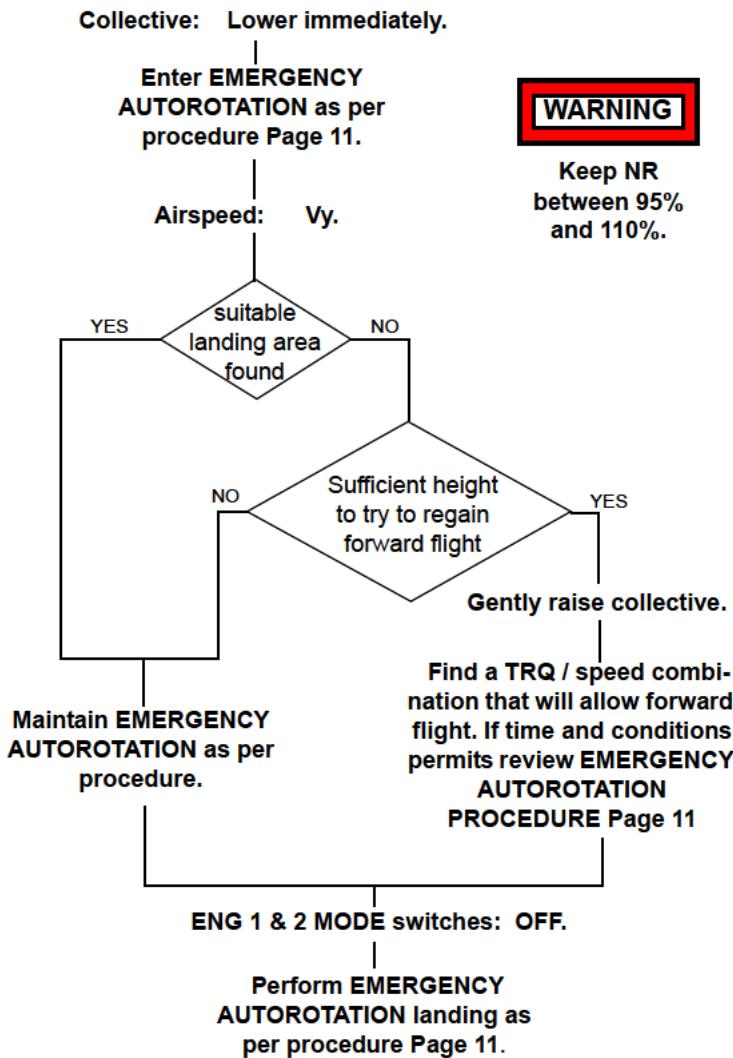
Collective: As required to cushion touchdown.

Carry out EMERGENCY/  
POST CRASH SHUTDOWN  
AND EGRESS  
procedure Page 37.

DRIVE

**CAUTION**

If engines are not shutdown a yaw to the right can be expected when attempting to cushion the touchdown. The yaw rate will be a function of the weight and collective application.


---

END

---

TAIL ROTOR DRIVE FAILURE IN FORWARD FLIGHT,  
POWER-ON

DRIVE

**WARNING**Keep NR  
between 95%  
and 110%.**Note**

If a run-on landing is not possible, decision should be made to minimize forward speed and accept the yaw rate.

**END**

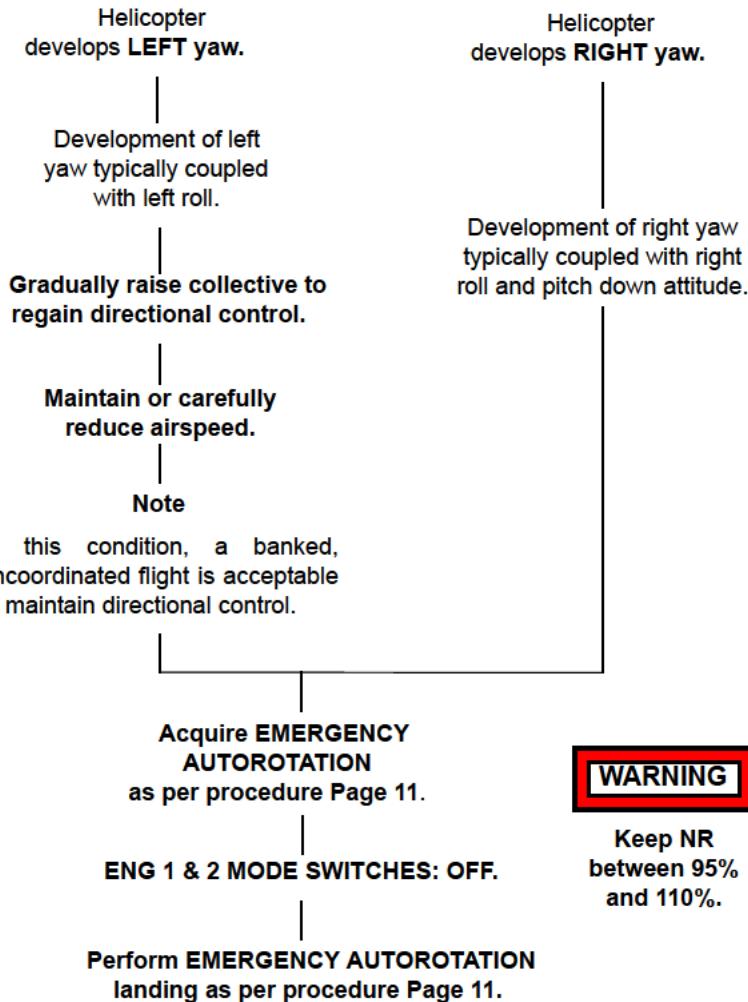
**TAIL ROTOR DRIVE FAILURE IN FORWARD FLIGHT, LOW POWER OR POWER-OFF**

Two cases are thus possible:

1. Development of left yaw, typically coupled with a left roll;
2. Development of right yaw, typically coupled with a right roll and a pitch down attitude.

**Note**

In a low power descent or in autorotation, a tail rotor drive failure could cause the helicopter to yaw left because of the aerodynamics forces produced by the vertical fin.


DRIVE

Continued on next page.

## TAIL ROTOR DRIVE FAILURE IN FORWARD FLIGHT, LOW POWER OR POWER-OFF (CONT'D)

Continuation from previous page

DRIVE



## Note

If run-on landing is not possible, decision should be made to zero out forward speed and accept the yaw rate.

END

## TAIL ROTOR CONTROL FAILURE IN HOVER

Collective: Lower to  
**LAND IMMEDIATELY.**

Cyclic: As necessary to  
maintain level attitude.

ENG 1 & 2 MODE switches: OFF.

**END**

**DRIVE**

## TAIL ROTOR CONTROL FAILURE IN FORWARD FLIGHT

Helicopter  
develops **LEFT** yaw.

Helicopter  
develops **RIGHT** yaw.

Gradually raise collective  
and/or reduce speed to  
regain directional control.

Gradually lower collective  
and/or increase speed to  
regain directional control.

**IF** time and conditions permit:  
- perform controllability check.

Approach: Perform keeping nose  
to the left.

Landing: Touchdown at lowest airspeed  
obtained in the controllability check.

Maintain collective on touchdown, then  
carefully lower it while slowing down.

Carefully use toe brakes to slow down helicopter.

Carry out **EMERGENCY/POST  
CRASH SHUTDOWN AND  
EGRESS** procedure Page 37.

**Note**

Wind from the front left quadrant of the helicopter may be  
beneficial.

**END**

**TAIL ROTOR CONTROL SEIZURE IN HOVER**

**Collective: Lower gently to  
LAND IMMEDIATELY.**

**Note**

Lowering the collective may cause the helicopter to start rotating. Touching down while rotating at nearly zero ground speed should result in little or no hazard.

**Note**

Do not switch engines to OFF unless a severe right yaw develops.

If left yaw develops, reducing NR to 100% may be beneficial.

Carry out **EMERGENCY/POST  
CRASH SHUTDOWN AND  
EGRESS** procedure Page 37.

END

**TAIL ROTOR CONTROL SEIZURE IN FORWARD FLIGHT**

If time and conditions permit:

- perform controllability check.

Approach and Landing:  
Perform at lowest airspeed found  
in controllability check.

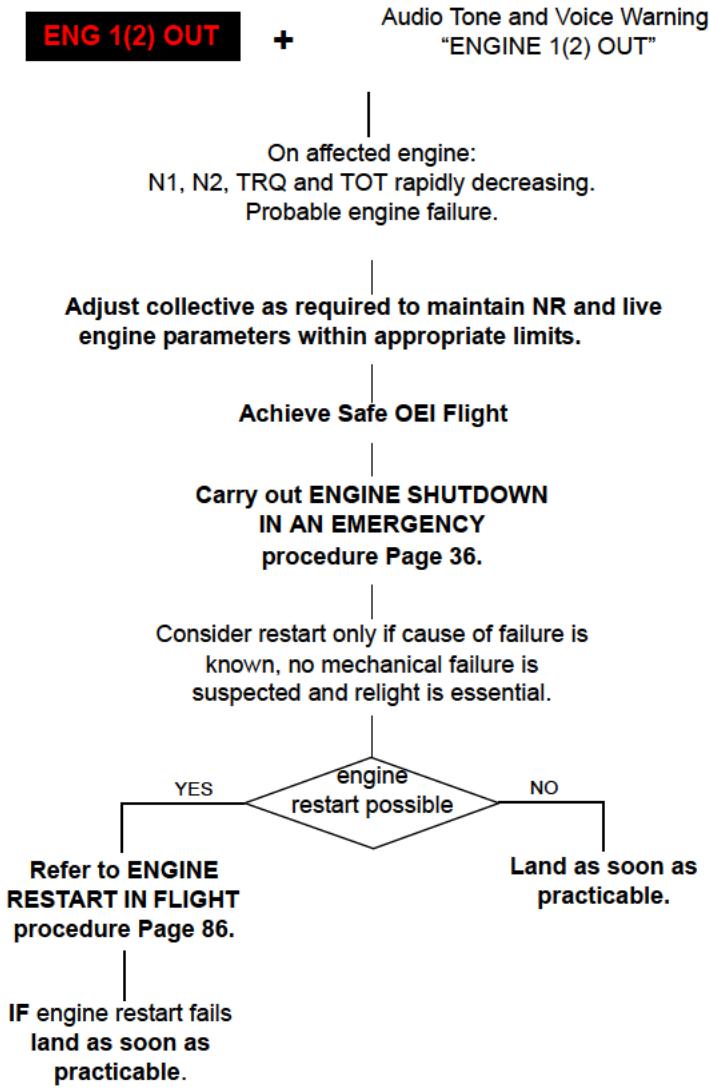
Maintain collective on touchdown, then  
carefully lower it while slowing down.

Carefully use toe brakes to slow down helicopter.

Carry out **EMERGENCY/POST  
CRASH SHUTDOWN AND  
EGRESS** procedure Page 37.

SECTION END

# ENGINE


|                                                     |           |
|-----------------------------------------------------|-----------|
| <b>ENGINE FAILURE</b>                               | <b>35</b> |
| <hr/>                                               |           |
| <b>DOUBLE ENGINE FAILURE</b>                        | <b>36</b> |
| <hr/>                                               |           |
| <b>ENGINE SHUTDOWN IN AN EMERGENCY</b>              | <b>36</b> |
| <hr/>                                               |           |
| <b>EMERGENCY/POST CRASH SHUTDOWN<br/>AND EGRESS</b> | <b>37</b> |
| <hr/>                                               |           |
| <b>ENGINE OIL PRESSURE</b>                          | <b>38</b> |
| <hr/>                                               |           |
| <b>ENGINE ECU FAIL</b>                              | <b>39</b> |

ENGINE

ENGINE

**This Page Is Intentionally Left Blank**

## ENGINE FAILURE



ENGINE

## ENGINE

**DOUBLE ENGINE FAILURE**

Enter into autorotation immediately.

See **EMERGENCY AUTOROTATION PROCEDURE** Page 11.

If time and conditions permit, carry out the **ENGINE SHUTDOWN IN AN EMERGENCY** procedure Page 36 while the helicopter is manoeuvred towards the landing area.

If sufficient additional time is available, attempt an engine re-start, refer to the **ENGINE RESTART IN FLIGHT** procedure Page 86.

**ENGINE SHUTDOWN IN AN EMERGENCY****CAUTION**

Care should be taken in confirming the failed engine prior to commencing this shutdown procedure.

Following an engine failure/malfunction, achieve Safe OEI Flight. On the failed engine, carry out the following shutdown procedures:

1. ENG MODE switch — OFF.
2. Engine power lever — OFF.
3. FUEL PUMP switch — OFF.
4. FUEL VALVE switch — CLOSED.
5. XFEED VALVE switch — CLOSED.
6. GEN switch — OFF.

**CAUTION**

If there is evidence of combustion (i.e. a rise in TOT) after engine shutdown in flight, perform **DRY MOTORING RUN** procedure, Page 77, to prevent any possible fire.

7. Fuel contents — Monitor and use XFEED VALVE as necessary.

**Land as soon as practicable.** If terrain permits, land maintaining some forward speed.

---

END

---

**EMERGENCY/POST CRASH SHUTDOWN AND EGRESS**

In the event of an emergency or crash landing, priority must be given to ensure that personnel are egressed safely at the most appropriate time.

1. ENG 1 & 2 MODE switches — OFF.
2. Engine power levers 1 & 2 — OFF.
3. FUEL PUMP 1 & 2 switches — OFF.
4. FUEL VALVE 1 & 2 switches — CLOSED.

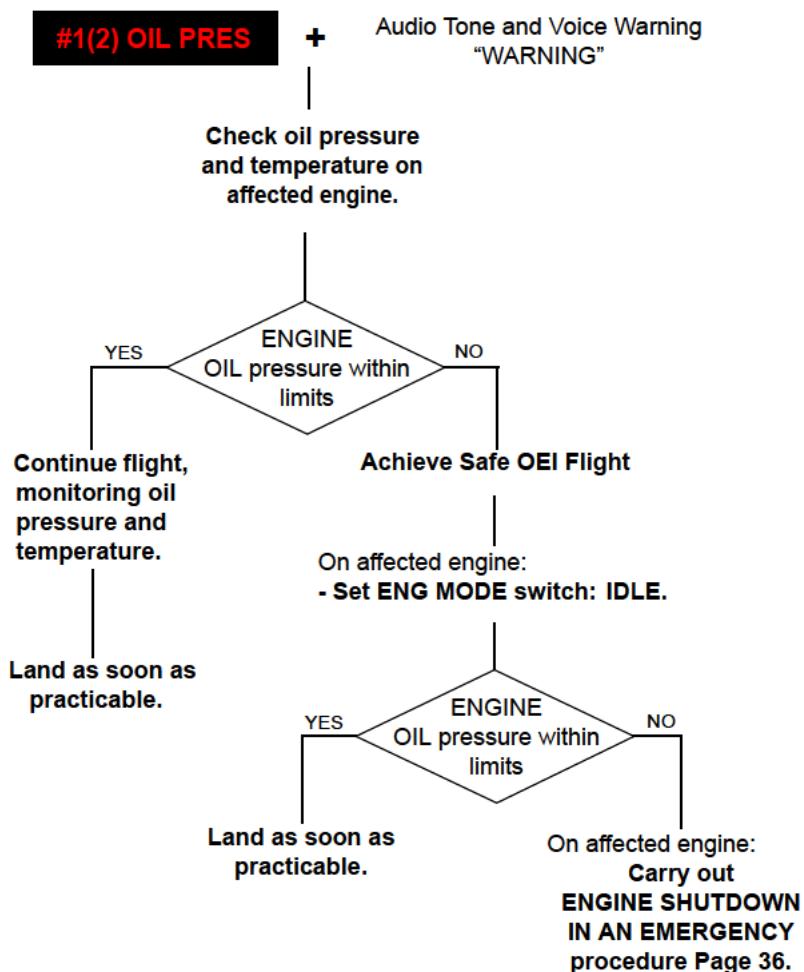
**ENGINE**

If risk of engine fire exists:

5. S/OFF FIRE pushbutton — Lift appropriate guard and press pushbutton (once only), S/OFF wording illuminates.
6. Fire extinguisher switch — Select BTL to 1 then, if required, select BTL to 2.
7. Rotor brake — ON.
8. BAT switch — OFF.
9. GEN 1 & 2 switches — OFF.

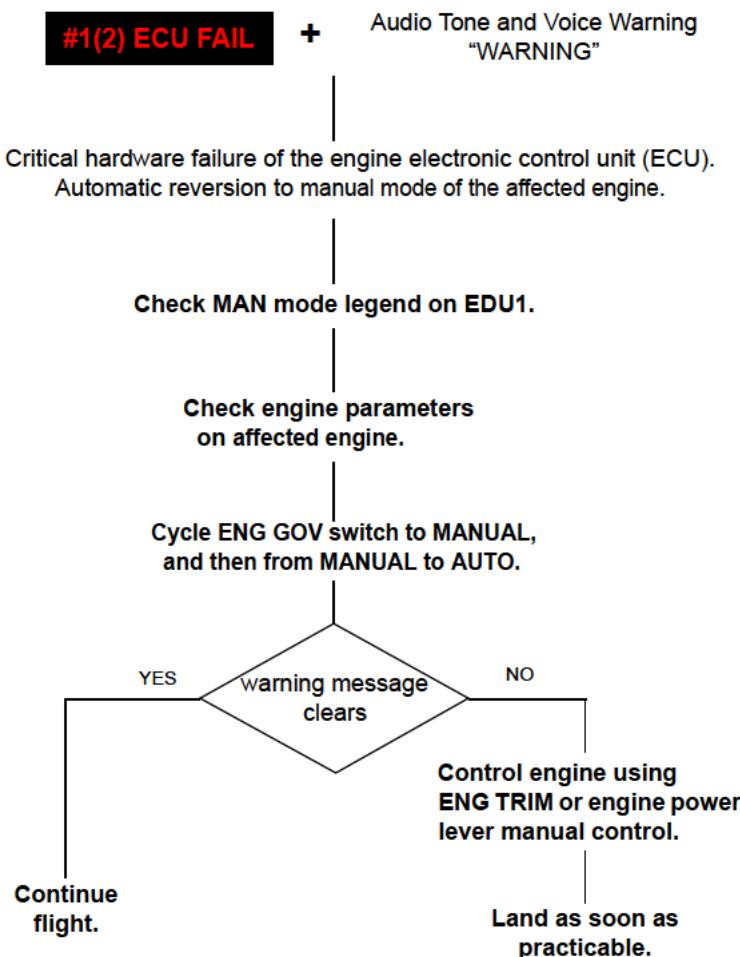
When rotor and helicopter stopped:

10. Helicopter — Egress as soon as possible.


---

END

---


## ENGINE

## ENGINE OIL PRESSURE



END

## ENGINE ECU FAIL

**Note**

In the presence of an ECU failure, the engine control system reverts to MANUAL mode regardless of the ENG GOV switch position. However, it is recommended to set the ENG GOV switch to MANUAL for congruence with the mode condition.

---

SECTION END

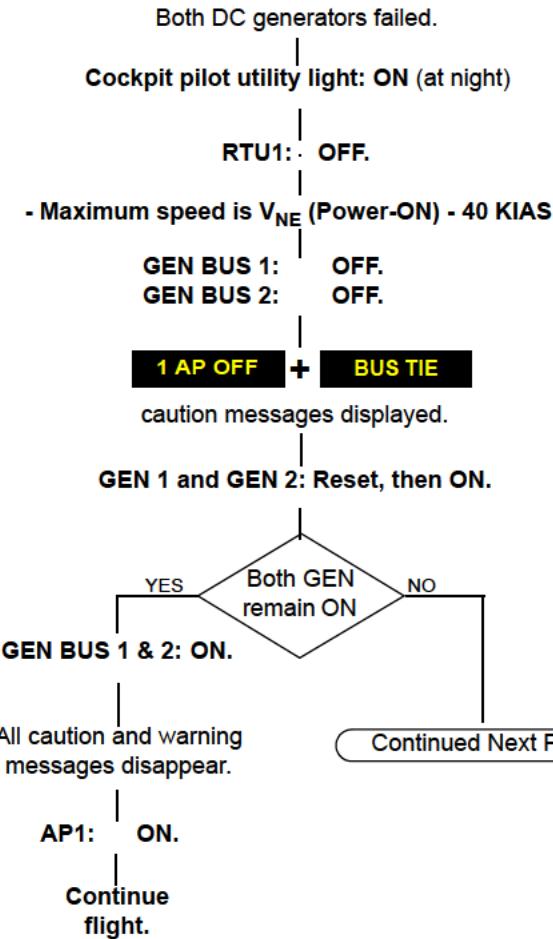
---

ENGINE

**This Page Is Intentionally Left Blank**

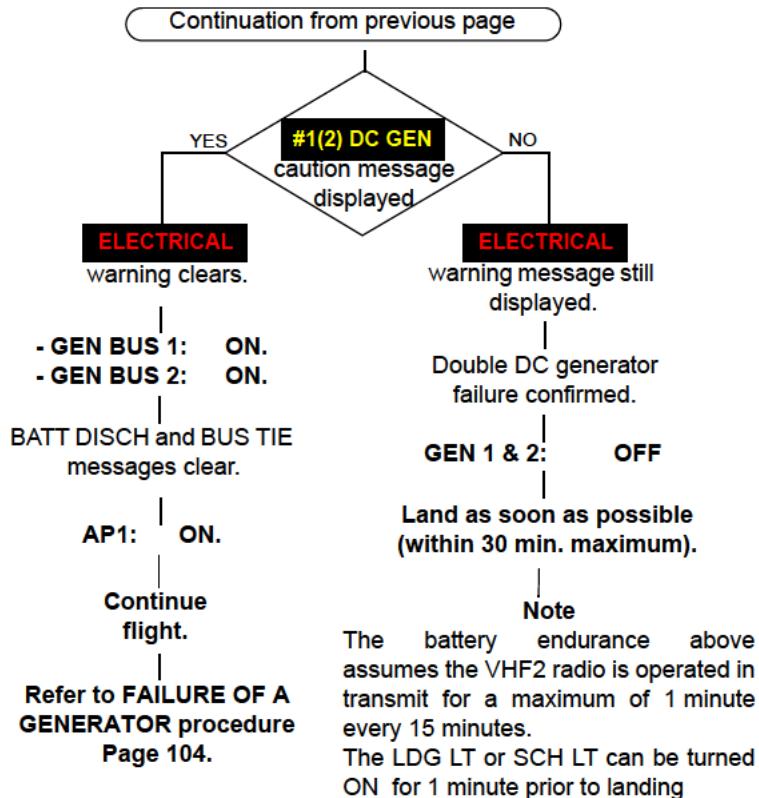
## ELECTRICAL

|                                                            |    |
|------------------------------------------------------------|----|
| DOUBLE DC GENERATOR FAILURE                                | 43 |
| DOUBLE DC GENERATOR FAILURE<br>(EXTENDED FLIGHT ENDURANCE) | 45 |
| SERVICES RETAINED DURING DOUBLE<br>DC GENERATOR FAILURE    | 48 |
| SERVICES LOST DURING DOUBLE DC<br>GENERATOR FAILURE        | 49 |
| BATTERY DISCHARGING                                        | 50 |
| BATTERY HOT                                                | 51 |
| ELECTRICAL FIRE / SMOKE (IN FLIGHT)                        | 52 |


ELECTR

ELECTR

**This Page Is Intentionally Left Blank**


## DOUBLE DC GENERATOR FAILURE

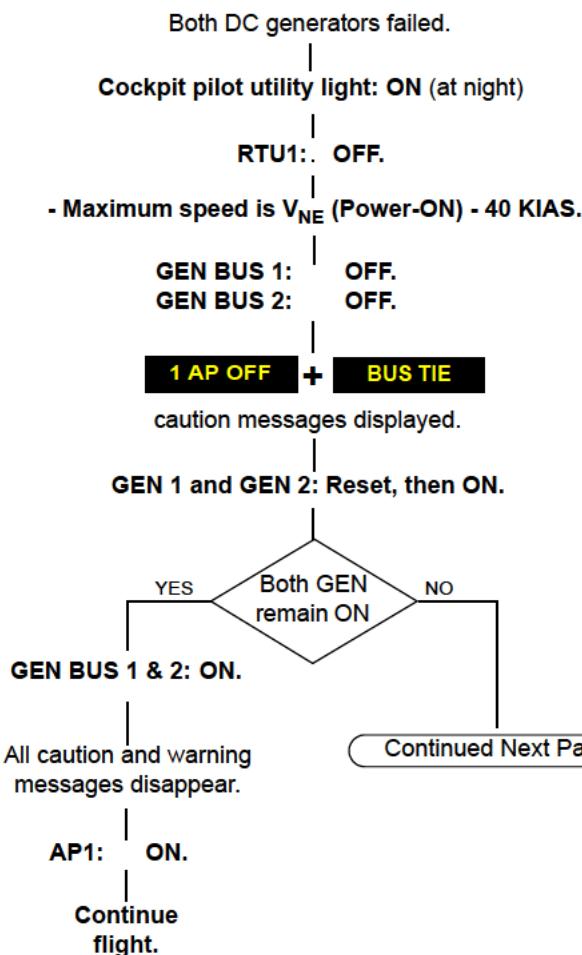
**ELECTRICAL** + **BATT DISCH** +      Audio Tone and  
voice warning  
"WARNING"



ELECTR

## DOUBLE DC GENERATOR FAILURE (CONT'D)

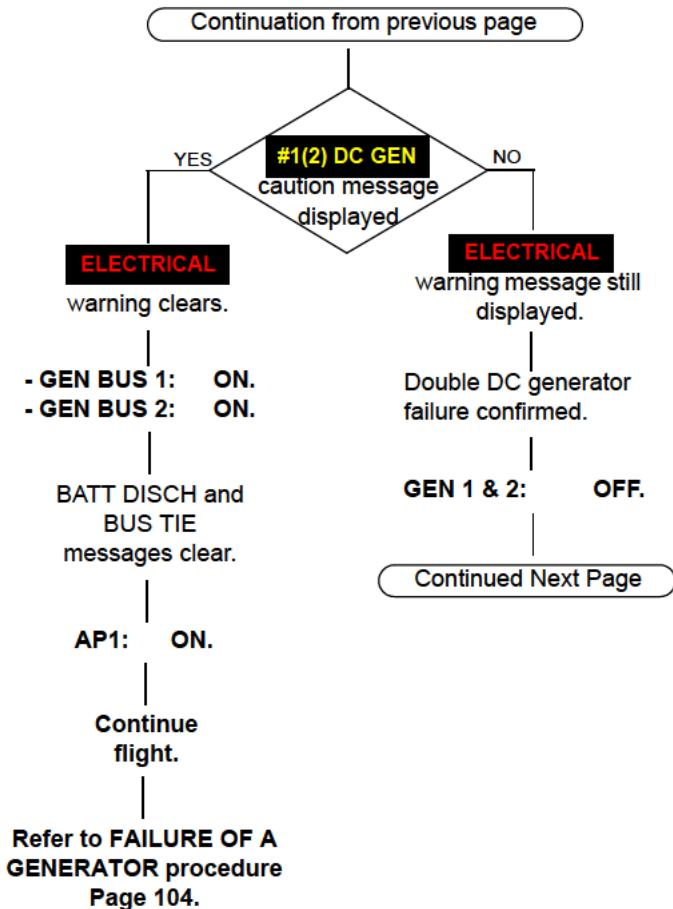



**Note**  
Refer to **SERVICES LOST DURING DOUBLE DC GENERATOR FAILURE** Page 49 for inoperative equipment.

**Note**  
If MAIN BUS 1 & 2 are required, GEN BUS 1 & 2 may be switched ON. The battery endurance will be reduced to 20 minutes.

END

DOUBLE DC GENERATOR FAILURE  
(EXTENDED FLIGHT ENDURANCE)


**ELECTRICAL** + **BATT DISCH** + Audio Tone and voice warning "WARNING"



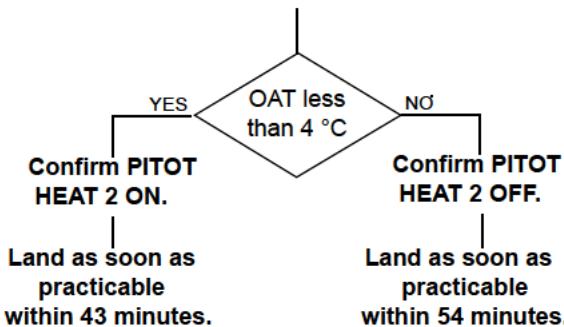
ELECTR

DOUBLE DC GENERATOR FAILURE  
(EXTENDED FLIGHT ENDURANCE) (CONT'D)

ELECTR



DOUBLE DC GENERATOR FAILURE  
(EXTENDED FLIGHT ENDURANCE) (CONT'D)


Continuation from previous page

- Set XFEED VALVE: CLOSED.
- FUEL PUMP 1 and 2 switches: OFF.
- EDU2 switch: OFF.

**WARNING**

When the indicated fuel quantity in each tank is 100 kg or less, avoid bank turns above 30 deg and sustained pitch angle below 0 deg.

ELECTR

**Note**

The battery endurance reported above assumes the pilot operates the VHF2 radio system in transmission for a maximum of 1 minute every 15 minutes.

The LDG LT or SCH LT can be turned ON for 1 minute before landing.

**Note**

Refer to **SERVICES LOST DURING DOUBLE DC GENERATOR FAILURE** Page 49 for inoperative equipment.

---

END

---

**SERVICES RETAINED DURING DOUBLE DC  
GENERATOR FAILURE**

ELECTR

**EMERGENCY BUS 1**

INVERTER 1  
ATC TRANSPONDER  
APMS CHANNEL 1 CONTROL  
LANDING GEAR HYDRAULIC CONTROL  
LANDING GEAR CONTROL PANEL  
POSITION LIGHTS  
LANDING LIGHTS  
EMERGENCY FLOATS (if installed)

**EMERGENCY BUS 2**

PILOT PFD (EADI)  
PILOT RBP  
PILOT FMS/GPS  
PILOT ICS (AMU)  
ICS SPEAKER AMPLIFIER  
VHF 2  
RTU 2  
RADAR ALTIMETER  
VOR/ILS 2  
AHRS 2  
PITOT HEAT 2  
PILOT UTILITY LIGHT  
SEARCHLIGHT  
EMERGENCY FLOATS (if installed)

**ESSENTIAL BUS 1**

PILOT MFD (EHSI)  
EDU SECONDARY  
DAU CH-B  
ENGINE 1 FIRE DETECTION  
ENGINE 1 FIRE EXTINGUISHER  
FUEL PUMP 1  
FUEL SHUT-OFF VALVE 1  
FUEL QUANTITY 1  
FUEL CROSS FEED VALVE  
ECU 1

**ESSENTIAL BUS 2**

HYDRAULIC CONTROL PANEL  
ADU 2  
APMS CHANNEL 2 CONTROL  
AFCS CHANNEL 2 (AP 2)  
ENGINE 2 FIRE DETECTION  
ENGINE 2 FIRE EXTINGUISHER  
FUEL PUMP 2  
FUEL SHUT-OFF VALVE 2  
FUEL QUANTITY 2  
ENG GOV CONTROL  
ECU 2

**BATTERY BUS**

|             |                   |
|-------------|-------------------|
| EDU PRIMARY | ESIS              |
| DAU CH-A    | COPILOT ICS (AMU) |
| ELT         | FORCE TRIM        |

**END**

## SERVICES LOST DURING DOUBLE DC GENERATOR FAILURE

## ELECTRICAL

## BATT DISCH

## MAIN BUS 1

COPilot PFD (EADI)  
AHRS 1 (primary supply)  
VOR/ADF 1  
RTU 1  
VHF 1  
CABIN ICS (PIA amplifier)  
COPilot RBP  
CHIP BURNER  
PEDESTAL ILLUMINATION  
COPilot UTILITY LIGHT  
CABIN LIGHTS  
PASSENGER WARNING SIGN  
COPilot WIPER  
ENG 1 IGN/START (no ENGINE 1 restart)  
PITOT HEATER 1  
HEATER/ECS (if installed)

## MAIN BUS 2

COPilot MFD (EHSI)  
AHRS 1 (Secondary supply)  
EVS  
TAS  
DIGITAL MAP  
OVERHEAD CONSOLE ILLUMINATION  
INSTRUMENT PANEL ILLUMINATION  
TAXI LIGHTS  
ANTI-COLLISION LIGHTS  
COCKPIT FAN  
INVERTER 2  
PILOT WIPER  
ENG 2 IGN/START (no ENGINE 2 restart)  
HYDRAULIC ACCUMULATOR (\*)  
(loss of MAIN & EMER PRESS indication)

## AUX BUS 1

GPS 1  
ADU 1

## AUX BUS 2

DME

(\*) If Fixed Landing Gear configuration:

HYDRAULIC ACCUMULATOR  
(loss of MAIN PRESS indication).

END

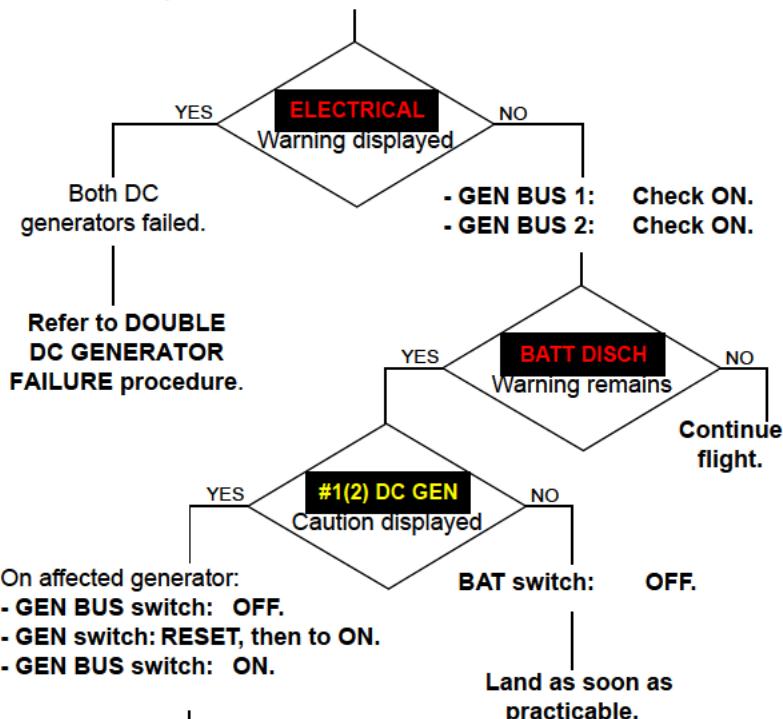
ELECTR

## BATTERY DISCHARGING

**BATT DISCH**

+

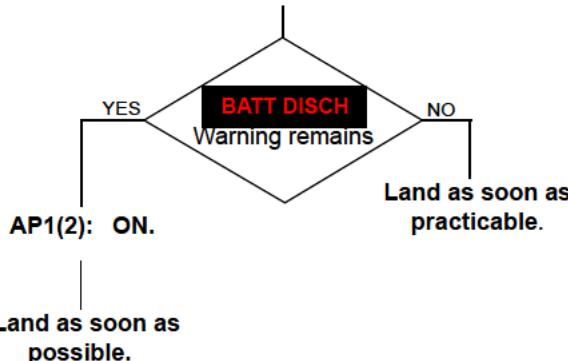
Audio Tone and Voice Warning  
"WARNING"


Battery discharging.

- Cockpit pilot utility light: **ON** (at night).
- Reduce power (if practicable).
- Maximum speed is  $V_{NE}$  (Power-ON) - 40 KIAS.

**CAUTION**

AP1(2) may be lost due to GEN 2(1), GEN BUS 2(1) and BAT switches disconnecting. AP1(2) may be re-engaged immediately.


ELECTR



Continued Next Page

## BATTERY DISCHARGING (CONT'D)

Continuation from previous page



ELECTR

## BATTERY HOT

**BATT HOT**+ Audio Tone and Voice Warning  
"WARNING"Battery temperature  
exceeding limits.

BAT switch: OFF.

Land as soon as  
practicable.**CAUTION**

Do NOT attempt engine restart in case of engine flame-out.

---

END

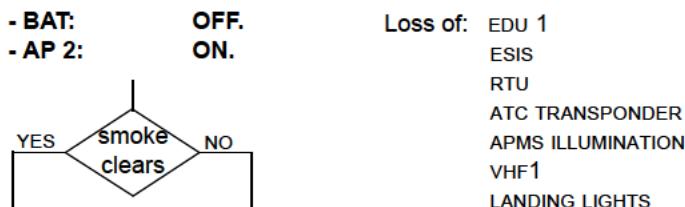
---

## ELECTRICAL FIRE / SMOKE (IN FLIGHT)

Visible signs of smoke in cockpit, with distinct acrid smell of burning insulation.

- Ventilate cockpit and cabin.

Maintain safe flight condition and use following procedure to isolate bus bars in order to establish source of fire.


Cockpit pilot utility light: ON (at night).

- GEN BUS 1: OFF.

- GEN BUS 2: OFF.

- GEN 1: OFF.

- VHF2 : Check tuned on required ATC frequency.



Land as soon as practicable.

Loss of: EDU 1  
ESIS  
FORCE TRIM  
VHF2  
SEARCHLIGHT

Continued Next Page

## ELECTRICAL FIRE / SMOKE (IN FLIGHT) (CONT'D)

Continuation from previous page

**WARNING**

Turning on the battery could cause the fire to re-ignite.

- BAT: ON.

YES **smoke clears**  
NO

- BAT: ON.  
- GEN 2: ON.  
- AP 1: Check ON.

- GEN 2: ON.  
- AP 1: Check ON.

YES **smoke reappears**  
NO

MAIN BUS 2 or  
AUX BUS 2  
affected by fire.

ESS BUS 1 or 2  
affected by fire.

EMERG BUS 2  
affected by fire.  
No pilot action is  
possible.

Land as soon as  
practicable.

No pilot action is  
possible.

Land as soon as  
possible.

Land as soon as  
possible.

IF smoke severe:  
- LAND IMMEDIATELY.

IF smoke severe:  
- LAND IMMEDIATELY.

Carry out EMERGENCY/POST CRASH  
SHUTDOWN AND EGRESS  
procedure Page 37.

Carry out EMERGENCY/  
POST CRASH SHUTDOWN  
AND EGRESS  
procedure Page 37.

ELECTR

---

 SECTION END 

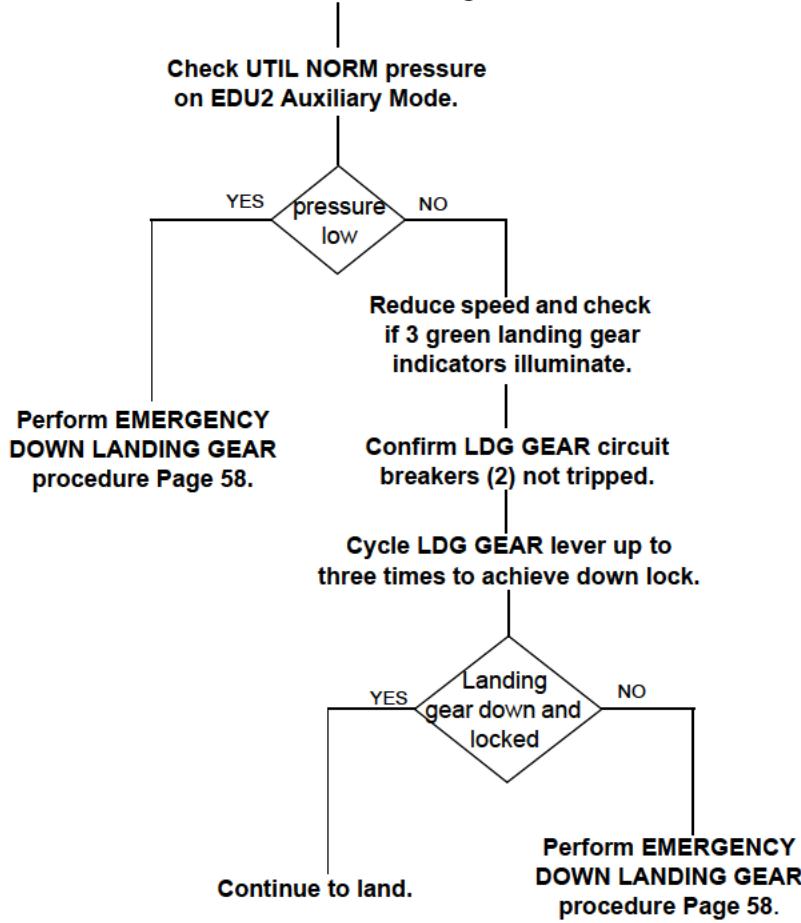
---

ELECTR

**This Page Is Intentionally Left Blank**

## LANDING GEAR & VARIOUS

|                                                               |    |
|---------------------------------------------------------------|----|
| LANDING GEAR FAILS TO LOCK DOWN<br>(TOTAL OR PARTIAL FAILURE) | 57 |
| EMERGENCY DOWN LANDING GEAR<br>PROCEDURE                      | 58 |
| STATIC PORT OBSTRUCTION                                       | 59 |
| FLIGHT IN THUNDERSTORM - LIGHTNING<br>STRIKE                  | 60 |


LDG &  
VARIOUS

LDG &  
VARIOUS

**This Page Is Intentionally Left Blank**

**LANDING GEAR FAILS TO LOCK DOWN  
(TOTAL OR PARTIAL FAILURE)**

IF, after selecting the landing gear DOWN, one or more green indicators remain blank or the red indicator remains on, do the following:

LDG &  
VARIOUS

---

END

---

## EMERGENCY DOWN LANDING GEAR PROCEDURE


## CAUTION

After extending the landing gear using the DOWN EMER lever position, the toe brakes and rotor brake are inoperative.

There is sufficient pressure in the emergency accumulator for only one extension of the landing gear, and for operation of the parking brake handle for emergency braking.

EMER/NORMAL selector: Turn clockwise breaking safety wire and selecting EMER.

Set landing gear lever to DOWN EMER (fully down).



END

## STATIC PORT OBSTRUCTION

When operating in adverse weather conditions (rain, snow, etc.), if erratic readings from the airspeed indicator and altimeter are suspected, with the STATIC source switch in the NORMAL position, select the ALTERNATE static source which uses cabin air for ADU2 airspeed and altitude. Proceed as follows:

### CAUTION

When the ALTERNATE static source is used, decrease the altimeter readings by 120 ft.

Open all vents and turn  
Heater/ECS OFF.

STATIC source switch: Lift guard.  
Select ALTERNATE.

Continue flight.

LDG &  
VARIOUS

### Note

The airspeed indication obtained through the alternate static source is slightly higher than the actual value in all speed range.

END

## FLIGHT IN THUNDERSTORM - LIGHTNING STRIKE

When flying near thunderstorm activity, the helicopter may be struck by lightning. If it is suspected that the helicopter has been struck by lightning, proceed as follows:

### CAUTION

Avoid performing extreme manoeuvres.

Reduce airspeed to 80 KIAS.

Land as soon as  
practicable.

LDG &  
VARIOUS

If it is suspected that the pilot's Pitot system has been damaged by lightning, proceed as per **STATIC PORT OBSTRUCTION** procedure Page 59.

If it is suspected that the helicopter has been struck by lightning this must be noted in the helicopter log-book.

SECTION END

## CAUTION MESSAGES

CAUTION  
MSGs

| CAS Caption      | Voice Message | Page    | Malfunction/System State                                                                 |
|------------------|---------------|---------|------------------------------------------------------------------------------------------|
| #1(2) A/F F FLTR | -             | 129     | Associated airframe fuel filter partially blocked. Impeding by-pass.                     |
| #1(2) DC GEN     | -             | 104/101 | Associated DC generator failed.                                                          |
| #1(2) DCU        | -             | 78      | Associated Data Collection Unit (DCU) failure.                                           |
| #1(2) ECU DATA   | -             | 79      | Loss of data from associated ECU.                                                        |
| #1(2) ECU MAINT  | -             | 79      | Associated engine electronic control unit (ECU) non-critical failure.                    |
| #1(2) F LOW FAIL | -             | 130     | Associated fuel-low sensor test failed. No fuel-low indication for associated fuel tank. |
| #1(2) FIRE DET   | -             | 85      | Associated engine fire detection system inoperative.                                     |
| #1(2) FUEL FLTR  | -             | 130     | Associated fuel filter partially blocked. Impeding by-pass.                              |
| #1(2) FUEL LOW   | -             | 127     | Fuel quantity in associated tank below 33 kg.                                            |
| #1(2) GEN CTL    | -             | 101     | Associated DC generator control box breaker in relay box tripped.                        |
| #1(2) HOT START  | -             | 80      | Associated engine TOT exceeded limit on engine starting.                                 |
| #1(2) OEI TIME   | -             | 78      | Cumulative time at OEI 2.5 min rating has been reached.                                  |
| #1(2) OIL CHIP   | -             | 72/73   | Presence of metal particles in associated engine oil circuit.                            |
| #1(2) OIL HOT    | -             | 71      | Associated engine oil temperature above maximum limit.                                   |

CAUTION  
MSGs

| CAS Caption       | Voice Message         | Page    | Malfunction/System State                                                                                     |
|-------------------|-----------------------|---------|--------------------------------------------------------------------------------------------------------------|
| #1(2) OVSPD       | -                     | 76      | Engine drive-shaft failure.                                                                                  |
| #1(2) OVSPD       | -                     | 77      | Associated engine N2 overspeed control system triggered.                                                     |
| #1(2) OVSPD DET   | -                     | 77      | Associated engine N2 overspeed control system failed.                                                        |
| #1(2) OVSPD TEST  | -                     | 78      | Associated engine N2 overspeed control circuit test failure.                                                 |
| #1(2) PLA         | -                     | 74      | Associated engine power lever (PLA) out of FLIGHT position whilst in AUTO mode.                              |
| #1(2) PLA MOTOR   | -                     | 74      | Associated engine power lever (PLA) remote control inoperative. Beep trim failed.                            |
| #1(2) PMS         | -                     | 75      | Associated ENG MODE switch (PMS) failed.                                                                     |
| #1(2) TOT LIMITER | -                     | 81      | Associated engine TOT limiter inoperative.                                                                   |
| 1(2) AP DEGRADED  | -                     | 146     | Pre-Flight Test completed with some tests skipped.<br>(Not applicable to EDU P/N 109-0900-76-2A05 and subs). |
| 1(2) AP FAIL      | "AUTOPILOT AUTOPILOT" | 153     | Uncommanded disengagement of associated AP channel.                                                          |
| 1(2) AP HOT       | -                     | 154     | Associate FCC temperature is above limit.                                                                    |
| 1(2) AP MAINT     | -                     | 148     | Any failure detected on AP channels                                                                          |
| 1(2) AP OFF       | "AUTOPILOT AUTOPILOT" | 106/152 | Associated AP channel not engaged.                                                                           |
| 1(2) AP P FAIL    | "AUTOPILOT AUTOPILOT" | 155     | Failure affecting a single series actuator in the pitch axis on associated AP.                               |

CAUTION  
MSGs

| CAS Caption       | Voice Message            | Page    | Malfunction/System State                                                                                 |
|-------------------|--------------------------|---------|----------------------------------------------------------------------------------------------------------|
| 1(2) AP R FAIL    | "AUTOPILOT<br>AUTOPILOT" | 155     | Failure affecting a single series actuator in the roll axis on associated AP.                            |
| 1(2) AP TEST DGR  | -                        | 147     | Pre-Flight Test completed with some tests skipped.<br>(Applicable to EDU P/N 109-0900-76-2A05 and subs). |
| 1(2) AP TEST FAIL | -                        | 145     | Associated AP channel has failed the pre-flight test.                                                    |
| 1(2) AP Y FAIL    | "AUTOPILOT<br>AUTOPILOT" | 156     | Failure affecting a single series actuator in the yaw axis on associated AP.                             |
| 1(2) DC GEN OVLD  | -                        | 106     | Associated generator in overload condition.                                                              |
| ADC 1(2)          | -                        | 202/178 | Associated ADU failed.                                                                                   |
| AHRS 1(2)         | -                        | 203/179 | Associated AHRS failed.                                                                                  |
| AP AHRS 1(2) FAIL | -                        | 142/179 | AFCS not receiving associated AHRS information.                                                          |
| AP DEGRADED       | -                        | 143     | AFCS not receiving ESIS data.<br>(Not applicable to EDU P/N 109-0900-76-2A05 and subs).                  |
| AP STDBY FAIL     | -                        | 144     | AFCS not receiving ESIS data.<br>(Applicable to EDU P/N 109-0900-76-2A05 and subs).                      |
| AP-CAS FAIL       | -                        | 141     | AFCS CAS messages and audio attention getters are unavailable.                                           |
| APMS PNL FAIL     | -                        | 149     | Failure of upper mode pushbuttons on APMS panel.                                                         |
| ATT OFF           | -                        | 141     | ATT mode unavailable or deselected in pitch or roll.                                                     |
| AWG FAIL          | -                        | 135     | Aural Warning Generator (AWG) system failure.                                                            |

CAUTION  
MSGs

| CAS Caption     | Voice Message | Page    | Malfunction/System State                                                                                    |
|-----------------|---------------|---------|-------------------------------------------------------------------------------------------------------------|
| BAG DOOR        | -             | 198     | Baggage compartment door not correctly closed.                                                              |
| BATT OFF        | -             | 102     | Battery off-line.                                                                                           |
| BUS TIE         | -             | 105     | Bus tie open.                                                                                               |
| C TRIM FAIL     | -             | 151     | AFCS has lost trim actuator drive capability in collective.                                                 |
| CABIN DOOR      | -             | 197     | Pilot's, copilot's and/or passengers' door not correctly closed.                                            |
| CHECK STRAP     | -             | 165     | IDS hardware configuration setting incorrect .<br>(Applicable to EDU P/N 109-0900-76-2A05 and subs).        |
| COCKPIT FAN     | -             | 199     | Cockpit fan failed.                                                                                         |
| DAU MISCMP-P    | -             | 165     | Miscompare of DAU primary parameters. Possible degradation in system function.                              |
| EFIS FAN        | -             | 200     | EFIS fans failed                                                                                            |
| EMER UTIL CHRG  | -             | 115     | Solenoid valve of emergency utility hydraulic system open. Emergency utility hydraulic system is operative. |
| EMER UTIL PRES  | -             | 114     | Low pressure in emergency utility hydraulic system.                                                         |
| ENG 1(2) IDLE   | -             | 70      | Attempted Take Off with one engine in Idle.                                                                 |
| EXT PWR ON      | -             | 103     | External power connected to the helicopter or external power door open.                                     |
| FIRE BTL 1(2)   | -             | 85      | Associated fire extinguisher bottle discharged.                                                             |
| FUEL DRAIN 1(2) | -             | 131     | Associated fuel drain valve open.                                                                           |
| FUEL PUMP 1(2)  | -             | 128/129 | Associated fuel pump failed.                                                                                |

| CAS Caption     | Voice Message  | Page                | Malfunction/System State                                                                          |
|-----------------|----------------|---------------------|---------------------------------------------------------------------------------------------------|
| IDS             | -              | 161/162/<br>163/164 | Failure of Integrated Display System (IDS). Possible degradation in system function.              |
| INV 1(2)        | -              | 106                 | Associated inverter failed.                                                                       |
| LANDING GEAR    | "LANDING GEAR" | 200                 | Height is less than 200 ft radalt and landing gear is retracted.                                  |
| MAIN RTR SERVO  | -              | 111                 | A servo valve in one of the three main rotor servo actuators is jammed.                           |
| MAIN UTIL CHRG  | -              | 115                 | Solenoid valve of main utility hydraulic system open. Main utility hydraulic system is operative. |
| MAIN UTIL PRES  | -              | 113                 | Low pressure in main utility hydraulic system.                                                    |
| MGT MATCH       | -              | 83                  | Crosstalk between the 2 ECU failed. No engine TOT matching possible.                              |
| MISTRIM         | -              | 149                 | Series actuators not centered.                                                                    |
| P TRIM FAIL     | -              | 150                 | AFCS has lost trim actuator drive capability in pitch.                                            |
| PARK BRK ON     | -              | 198                 | Parking brake ON. (Not applicable to EDU P/N 109-0900-76-2A05 and subs).                          |
| PITOT 1(2) FAIL | -              | 199                 | Associated Pitot heat failed.                                                                     |
| R TRIM FAIL     | -              | 150                 | AFCS has lost trim actuator drive capability in roll.                                             |
| ROTOR BRK       | -              | 123                 | Rotor brake system degraded or rotor brake lever not in OFF position.                             |
| RPM SELECT      | -              | 84                  | NR switch inoperative. Inability to trim NR.                                                      |
| SERVO 1(2)      | -              | 109/110             | Associated servo-hydraulic system failed.                                                         |

CAUTION  
MSGs

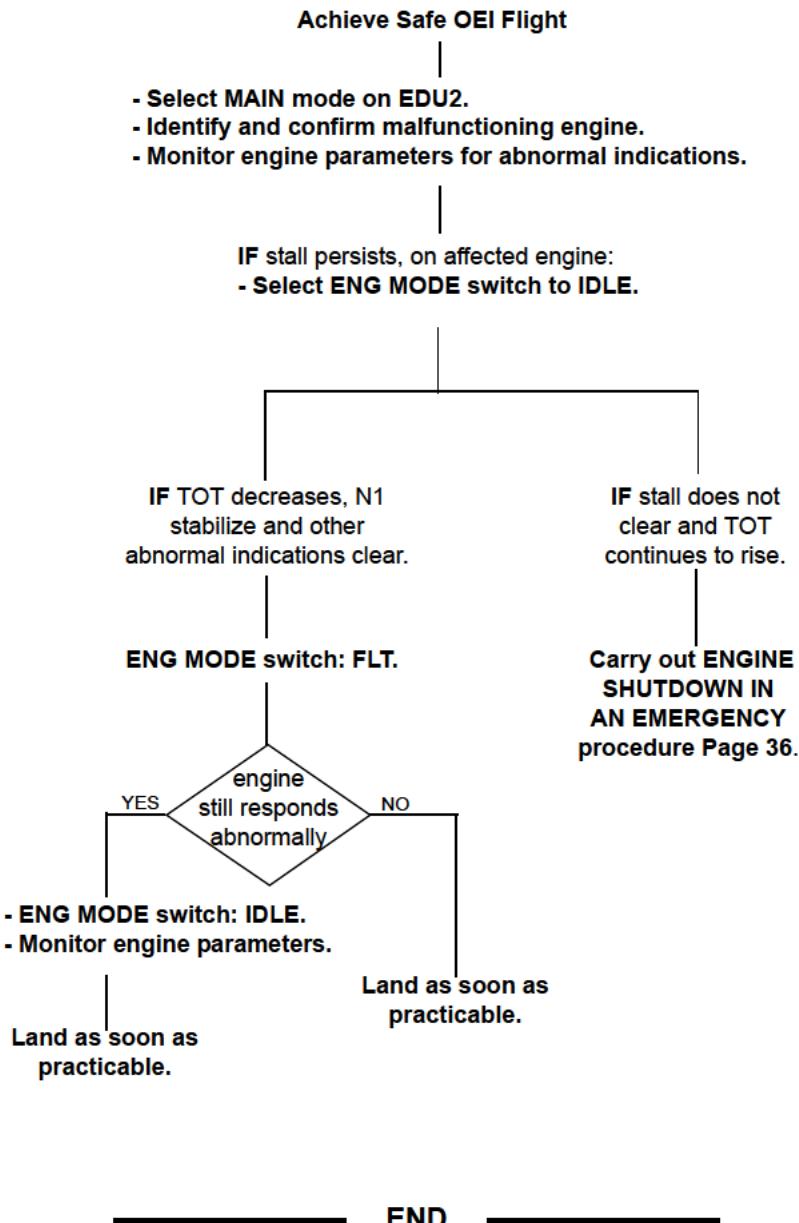
CAUTION  
MSGs

| CAS Caption   | Voice Message | Page    | Malfunction/System State                                                                        |
|---------------|---------------|---------|-------------------------------------------------------------------------------------------------|
| TGB OIL CHIP  | -             | 121/122 | Presence of metal particles in the tail rotor gearbox oil.                                      |
| TRQ LIMITER   | -             | 82      | Engine torque limiter inoperative.                                                              |
| XMSN OIL CHIP | -             | 119/120 | Presence of metal particles in the main gearbox oil.                                            |
| XMSN OVTRQ    | "OVERTORQUE"  | 119     | Transmission overtorque:<br>In AEO: TRQ1 + TRQ2 above 214%.<br>In OEI: TRQ1 or TRQ2 above 162%. |
| Y TRIM FAIL   | -             | 151     | AFCS has lost trim actuator capability in yaw.                                                  |

## VOICE ONLY CAUTIONS

| Voice Message                             | System State                                                                                                   | Page |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|------|
| "TWO HUNDRED FEET"                        | When helicopter descends below 200 ft RAD ALT.                                                                 | -    |
| "AIRSPEED"                                | $V_{NE}$ exceeded.                                                                                             | 204  |
| <u>For EFIS SW versions 8.0E or later</u> |                                                                                                                |      |
| "MINIMUMS, MINIMUMS"                      | Deviation from above to below minimum altitude bug. Minimum altitude readout turns amber (yellow) and flashes. | 204  |
| "DECISION HEIGHT"                         | Descending below decision height bug causes decision height readout to turn yellow and flash.                  | -    |
| "ALTITUDE ALTITUDE"                       | Deviation greater than 150 ft from selected altitude after capture.                                            | 204  |

SECTION END


## ENGINE

|                                                                                                   |    |
|---------------------------------------------------------------------------------------------------|----|
| COMPRESSOR STALL                                                                                  | 69 |
| UNUSUAL ENGINE NOISE                                                                              | 70 |
| ATTEMPTED TAKE-OFF WITH ONE<br>ENGINE IN IDLE                                                     | 70 |
| ENGINE OIL TEMPERATURE                                                                            | 71 |
| ENGINE OIL CHIP (HELICOPTERS NOT<br>EQUIPPED WITH PULSED CHIP<br>DETECTOR SYSTEM P/N 109-0811-48) | 72 |
| ENGINE OIL CHIP (HELICOPTERS<br>EQUIPPED WITH PULSED CHIP<br>DETECTOR SYSTEM P/N 109-0811-48)     | 73 |
| ENGINE POWER LEVER REMOTE<br>CONTROL FAIL                                                         | 74 |
| ENGINE POWER LEVER POSITION                                                                       | 74 |
| ENGINE MODE SELECT SWITCH FAILURE                                                                 | 75 |
| ENGINE DRIVE SHAFT FAILURE                                                                        | 76 |
| ENGINE POWER TURBINE OVERSPEED                                                                    | 77 |
| ENGINE POWER TURBINE OVERSPEED<br>DETECT FAILURE                                                  | 77 |
| N2 OVERSPEED CONTROL CIRCUIT TEST<br>FAILURE                                                      | 78 |
| OEI 2.5 MIN RATING OUTSIDE LIMITS                                                                 | 78 |
| DATA COLLECTION UNIT MALFUNCTION                                                                  | 78 |

ENGINE

|                                                   |           |
|---------------------------------------------------|-----------|
| <b>ENGINE CONTROL UNIT - MAINTENANCE REQUIRED</b> | <b>79</b> |
| <b>ENGINE CONTROL UNIT - LOSS OF DATA</b>         | <b>79</b> |
| <b>ENGINE HOT START</b>                           | <b>80</b> |
| <b>TOT LIMITER MALFUNCTION</b>                    | <b>81</b> |
| <b>TORQUE LIMITER MALFUNCTION</b>                 | <b>82</b> |
| <b>MGT MISMATCH</b>                               | <b>83</b> |
| <b>ROTOR SPEED SELECTOR MALFUNCTION</b>           | <b>84</b> |
| <b>ENGINE FIRE DETECTOR SYSTEM FAILURE</b>        | <b>85</b> |
| <b>ENGINE FIRE EXTINGUISHER BOTTLE DISCHARGED</b> | <b>85</b> |
| <b>ENGINE RESTART IN FLIGHT PROCEDURE</b>         | <b>86</b> |
| <b>ABORTED ENGINE START PROCEDURE</b>             | <b>89</b> |
| <b>AUTO TO MANUAL MODE TRANSFER</b>               | <b>90</b> |
| <b>ENGINE START IN MANUAL MODE (ON GROUND)</b>    | <b>91</b> |
| <b>ENGINE SHUTDOWN IN MANUAL MODE</b>             | <b>93</b> |
| <b>ENGINE OPERATION IN MANUAL MODE</b>            | <b>94</b> |
| <b>ENGINE POWER LEVER (PLA) JAMMED PROCEDURE</b>  | <b>97</b> |

## COMPRESSOR STALL



## ENGINE

END

## UNUSUAL ENGINE NOISE

ENGINE

Achieve Safe OEI Flight

Monitor engine parameters for abnormal indications.

Select each ENG MODE switch to IDLE then back to FLT sequentially to identify the affected engine.

Use ENGINE SHUTDOWN IN AN EMERGENCY procedure Page 36 to shutdown affected engine as soon as practicable to avoid possible secondary compressor damage.

Land as soon as practicable.

END

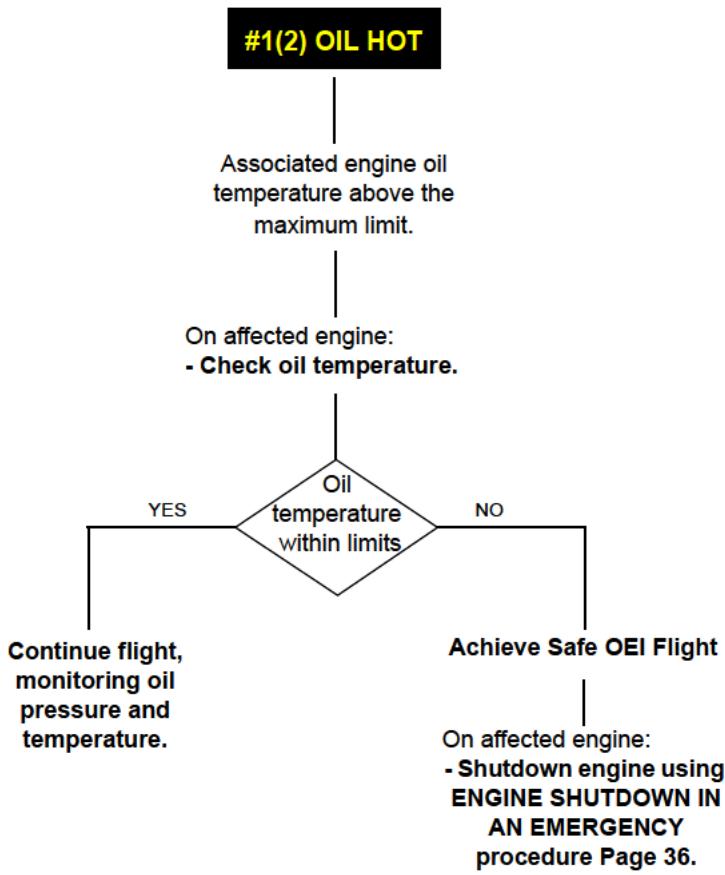
## ATTEMPTED TAKE-OFF WITH ONE ENGINE IN IDLE

ENG 1(2) IDLE

+

Audio Tone and voice warning "ENGINE IDLE"

On ground, collective lever raised while Engine #1(2) is still in IDLE.


Do NOT take-off.

Lower collective.

Bring Engine #1(2) to FLIGHT regime.

END

## ENGINE OIL TEMPERATURE



---

END

---

**ENGINE OIL CHIP**

(Helicopters not equipped with pulsed chip detector system  
P/N 109-0811-48)

ENGINE

**#1(2) OIL CHIP**

Presence of metal particles in associated engine oil.

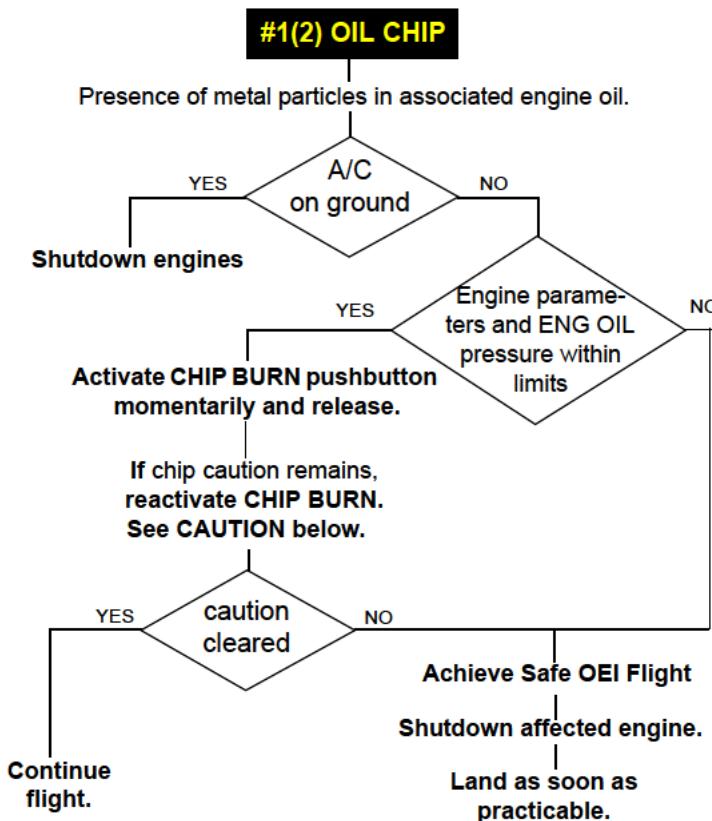
- Check affected engine parameters and engine oil pressure.

Achieve safe OEI flight.

Reduce power by lowering collective.

Shutdown affected engine.

Land as soon as practicable.


---

END

---

**ENGINE OIL CHIP**

(Helicopters equipped with pulsed chip detector system  
P/N 109-0811-48)

**ENGINE****CAUTION**

A maximum of 3 chip burn activations are permitted per flight to clear the caution.

**Note**

Appropriate log book entry must be made for each message activation.

If chip burn activation has been recorded, perform maintenance action as per applicable maintenance manual before next flight..

---

END

---

## ENGINE POWER LEVER REMOTE CONTROL FAIL

**#1(2) PLA MOTOR**

Associated engine power lever (PLA) remote control beep not functioning.

Continue flight.

If engine manual control is required, this must be carried out by moving the associated engine power lever manually.

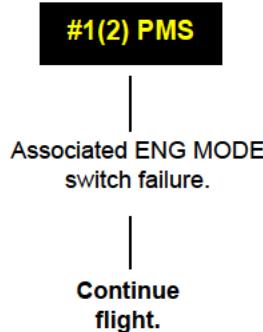
END

## ENGINE POWER LEVER POSITION

**#1(2) PLA**

Associated engine power lever (PLA) out of FLIGHT position detent. (Message active in AUTO mode only).

Check engine power lever position and correct if required.


Even if caution message remains:

Continue flight.

On affected engine:  
Monitor engine parameters.

END

## ENGINE MODE SELECT SWITCH FAILURE

**Note**

Engine shutdown may not be accomplished through the affected ENG MODE switch. If necessary, use the engine power lever to shutdown the engine. Refer to **ENGINE SHUT DOWN IN MANUAL MODE** procedure Page 93.

---

END

---

ENGINE

**ENGINE DRIVE SHAFT FAILURE**

Rapid decrease in Eng 1(2) TRQ to 0 %  
with Eng 1(2) N2 above NR and

**#1(2) OVSPD**

Drive shaft failure on affected engine.

**Achieve Safe OEI Flight**

**Carry out ENGINE SHUTDOWN IN  
AN EMERGENCY  
procedure Page 36.**

Land as soon as  
practicable.

**Note**

Following an engine drive shaft failure N2 of affected engine will oscillate between N2 overspeed trip point (111 %) and 109 %.

**ENGINE**

**END**

## ENGINE POWER TURBINE OVERSPEED

**#1(2) OVSPD**

Associated engine N2 at or above 111% and engine in overspeed condition.  
N2 overspeed control system triggered.  
Engine N2 will fluctuate between 111 % and 109 %.

Achieve Safe OEI Flight

Carry out  
**ENGINE SHUTDOWN IN  
AN EMERGENCY**  
procedure Page 36.

---

**END**

---

## ENGINE POWER TURBINE OVERSPEED DETECT FAILURE

**#1(2) OVSPD DET**

Associated engine N2 overspeed detection system not operational.

YES

A/C  
in flight

NO

Continue flight.

Shutdown affected engine.

**CAUTION**

Be aware that N2 overspeed protection system on affected engine will not function in the event of an N2 overspeed.

---

**END**

---

ENGINE

## N2 OVERSPEED CONTROL CIRCUIT TEST FAILURE

## #1(2) OVSPD TEST

Correct problem  
before flight.

END

## OEI 2.5 MIN RATING OUTSIDE LIMITS

## #1(2) OEI TIME

Cumulative time at OEI 2.5 min rating  
has been reached.

Continue flight.

Avoid flight conditions that require  
OEI 2.5 min power. Refer to Engine MM for  
maintenance action.

END

## DATA COLLECTION UNIT MALFUNCTION

## #1(2) DCU

Correct problem  
before flight.

Note

#1(2) DCU caution messages active only on ground with  
ENG MODE switch in OFF position.

END

## ENGINE CONTROL UNIT - MAINTENANCE REQUIRED

## #1(2) ECU MAINT

Correct problem  
before flight.

## Note

#1(2) ECU MAINT caution messages active only on ground with ENG MODE switch in OFF position.

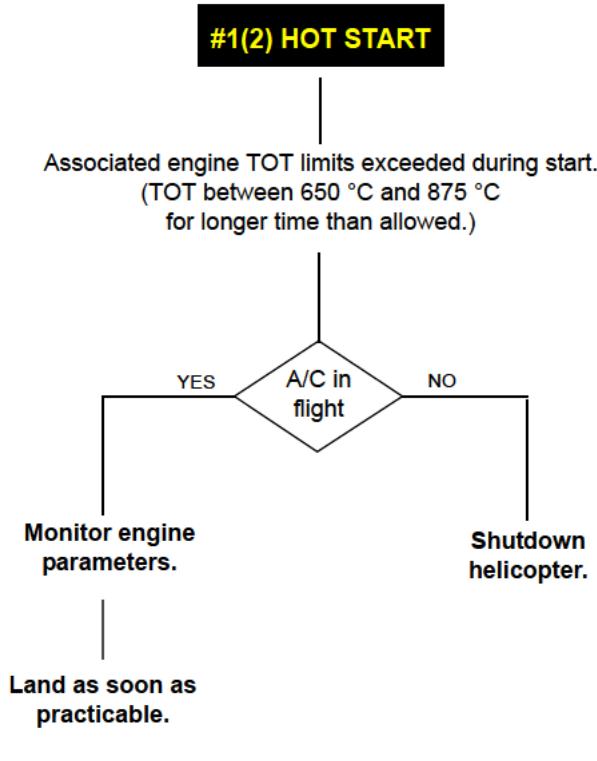
END

## ENGINE CONTROL UNIT - LOSS OF DATA

## #1(2) ECU DATA

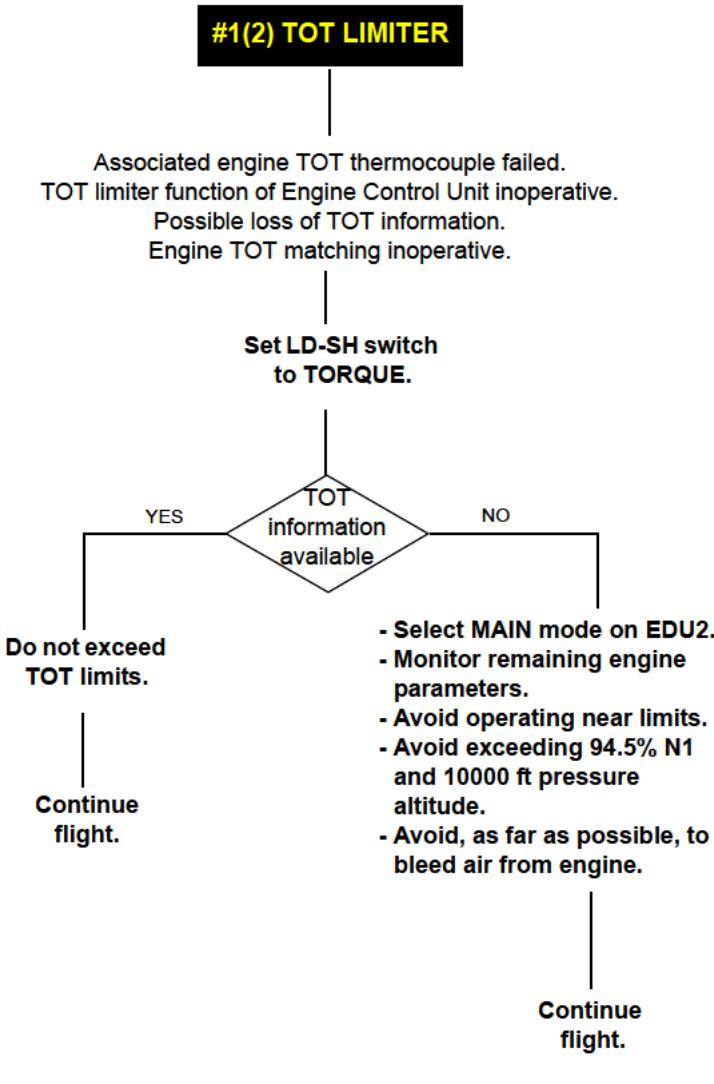
Loss of data from associated engine ECU.

On affected engine:


- Check engine parameters displayed on EDU1 for correctness of backup indications.

Continue flight.

ENGINE


END

## ENGINE HOT START



ENGINE

## TOT LIMITER MALFUNCTION



ENGINE

## TORQUE LIMITER MALFUNCTION

## TRQ LIMITER

Torque limiter function of Engine Control Unit inoperative  
and no communication between Engine Control Units.  
Engine matching inoperative.

Avoid operating  
near torque limits.

Continue  
flight.

ENGINE

## CAUTION

The AFCS Upper Modes and Flight Director modes must  
not be used unless conducting an approach, missed  
approach, transition to/from the hover or hover.

END

## MGT MISMATCH

**MGT MATCH**

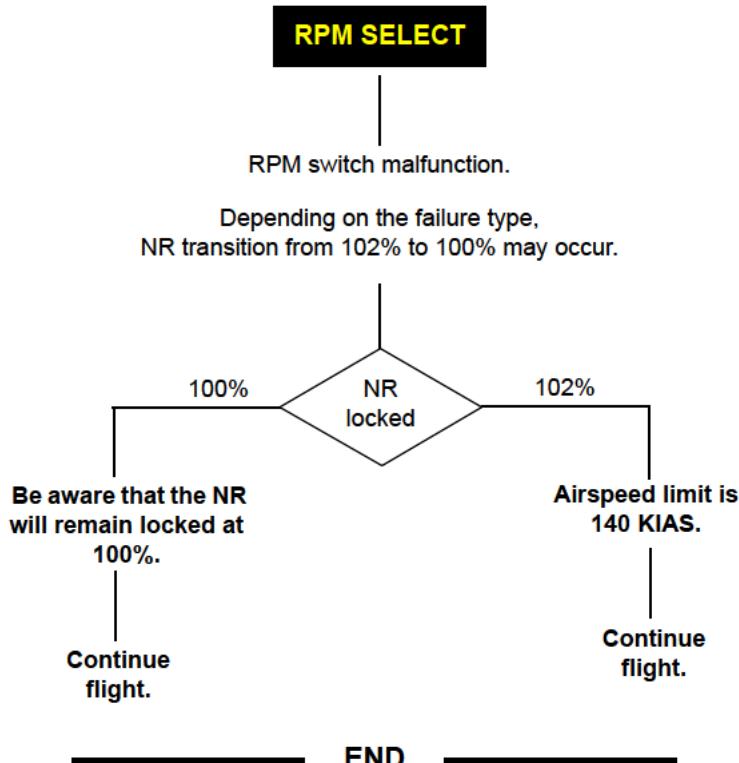
Crosstalk between the 2 ECU failed.  
No engine TOT matching possible.

Set LD-SH switch  
to TORQUE.

Avoid operating near  
engine limits.

Continue  
flight.

**ENGINE**


---

**END**

---

## ROTOR SPEED SELECTOR MALFUNCTION

ENGINE



## ENGINE FIRE DETECTOR SYSTEM FAILURE

**#1(2) FIRE DET**

Associated engine fire detection system inoperative.

On affected engine:  
Monitor engine parameters for abnormalities and check for signs of fire.

Land as soon as practicable.

**END****ENGINE**

## FIRE EXTINGUISHER BOTTLE DISCHARGED

**FIRE BTL 1(2)**

Associated fire extinguisher bottle discharged.

Refill bottle before next flight.

**END**

## ENGINE RESTART IN FLIGHT PROCEDURE

Refer to **ENGINE START PROCEDURE** for the indications associated with malfunctions during engine starting and to **ABORTED ENGINE START PROCEDURE** Page 89 for the recommended abort procedure.

### CAUTION

If an engine is shutdown or a flame-out occurs during flight, and if there is no indication of a mechanical malfunction or engine fire, the engine may be restarted. Do NOT attempt to restart the engine if the cause of the flame-out has not been ascertained.

## IN FLIGHT RESTART PROCEDURE IN AUTO MODE

The following is the procedure for restarting an engine in flight with the ECU operative (in AUTO mode).

### CAUTION

For engine restarts below 15000 ft, the ENG MODE switch should only be moved from the OFF position, once N1 is below 20%.

Above 15000 ft, the ENG MODE switch should only be moved from the OFF position, once N1 is below 5%.

1. Recommended airspeed — Vy.
2. Engine power lever — FLIGHT.
3. FUEL VALVE switch — OPEN (Bar vertical).
4. FUEL PUMP switch — ON.

### Note

It is recommended to start the engine to IDLE, nevertheless, if necessary, it is possible to start to FLIGHT by setting the ENG MODE switch directly to FLT.

5. ENG MODE switch — IDLE.
6. N1 — Note increasing and START legend vertically displayed.
7. TOT — Note increasing and IGN legend vertically displayed.
8. Engine oil pressure — When N1 is greater than 40%, check rising.

9. N2 — Confirm stabilised below 100%.  
**Note**  
If the engine was started to FLT, the N2 will stabilize with NR.
10. Engine oil — Confirm temperature and pressure within limits.
11. ENG MODE switch — FLT.
12. N2/NR — Confirm stabilised and matched with NR.
13. XFEED switch — AUTO (bar vertical)

### IN FLIGHT RESTART PROCEDURE IN MANUAL MODE

The following is the procedure for restarting an engine in flight with the ECU inoperative (in MANUAL mode).

#### CAUTION

For engine restarts below 15000 ft, the engine power lever must only be engaged once N1 is below 20%.

Above 15000 ft, the engine power lever must only be engaged, once N1 is below 5%.

ENGINE

1. Recommended airspeed — Vy.
2. Engine power lever — OFF
3. ENG GOV switch — MANUAL  
(MAN legend displayed on EDU1).

#### Note

In the presence of an ECU failure, the engine control system reverts to MANUAL mode regardless of the ENG GOV switch position. However, it is recommended to set the ENG GOV switch to MANUAL for congruence with the mode condition.

4. FUEL VALVE switch — OPEN (Bar vertical).
5. FUEL PUMP switch — ON.
6. ENG MODE switch — IDLE.
7. Engine power lever — IDLE.
8. Starting button — Push and hold. START and IGN legends vertically displayed on N1 and TOT scales on EDU1.

## ENGINE

9. N1 — Note increasing.
10. Engine power lever — Move forward to obtain light-up.

**Note**

At low altitude (below 3000 ft), light-up is expected to occur when the engine power lever is nearly in FLIGHT position.

At high altitude (above 15000 ft), light-up may occur as soon as the engine power lever is out of the IDLE position.
11. TOT — Note increasing at light-up. Monitor TOT value and control with slight movements of the engine power lever to ensure TOT transient value is not exceeded.

**Note**

If engine hangs at N1 below 54%, slowly move engine power lever forward, if necessary even beyond FLIGHT position, until the engine accelerates. Monitor TOT, N1 and NR. If engine does not accelerate, shutdown engine by setting engine power lever to OFF position and release starting button.
12. Starting button — Release when N1 reaches 50%. START and IGN legends suppressed.
13. Engine power lever — Set the power as required.
14. Engine oil pressure — When N1 is greater than 40% Check rising.

---

**END**

---

## ABORTED ENGINE START PROCEDURE

**CAUTION**

Failure to follow the abort procedure may cause damage to the engine.

**Note**

Observe the igniter and starter generator duty cycle limitations, as per Section "LIMITATIONS".

Monitor engine start and if any of the following occur:

- lightup is not obtained within 15 seconds;
- abnormal noises are heard;
- TOT increases beyond start limits  
(#1(2) HOT START caution message displayed);
- (on ground) rotor has not begun to rotate when N1 is 40%;
- N1 or N2 increase beyond start limits;
- engine hangs (stagnation in N1 below 54%);

shutdown engine by:

1. ENG MODE switch : OFF.

If engine does not begin to shutdown:

Engine power lever : OFF.

2. FUEL PUMP : OFF.
3. FUEL VALVE switch : CLOSED (bar horizontal).

**END**

**ENGINE**

## AUTO TO MANUAL MODE TRANSFER

Transfer from AUTO to MANUAL mode can occur as a result of:

1. Setting ENG GOV switch on collective grip to MANUAL.
2. Automatic reversion to MANUAL due to ECU critical hardware failure.

### Note

In the presence of an ECU failure, #1(2) ECU FAIL warning message will be displayed and audio tone and voice warning "WARNING" audible.

### Note

In presence of an ECU failure, the engine control system reverts to MANUAL mode regardless of the ENG GOV switch position. However, it is recommended to set the ENG GOV switch to MANUAL for congruence with the mode condition.

### Note

#1(2) PLA caution message is active only when operating in AUTO mode.

The MANUAL mode condition is indicated by the activation of the MAN legend displayed vertically on the TRQ gauge.

END

## ENGINE START IN MANUAL MODE (ON GROUND)

Following an ECU failure, flight may be initiated only in order to fly (VFR) without passengers on board to a repair facility.

### Note

An engine should be started in MANUAL mode only if a start in AUTO mode is not possible.

Before proceeding to start the engine in manual mode, perform an ECU power OFF-ON reset in an attempt to clear all faults.

If critical faults are not cleared (ECU FAIL warning and MAN legend still displayed), proceed as follows:

1. Perform ENGINE PRE-START CHECKS, Page 57.
2. EDU 1 — Confirm START page selected.
3. ENG GOV switch — MANUAL

### Note

In the presence of an ECU failure, the engine control system reverts to MANUAL mode regardless of the ENG GOV switch position. However, it is recommended to set the ENG GOV switch to MANUAL for congruence with the mode condition.

4. GEN 1 and 2 switches — ON.
5. FUEL VALVE switch — OPEN (Bar vertical).
6. FUEL PUMP switch — ON.
7. XFEED VALVE switch — Confirm in AUTO position.  
Confirm bar horizontal.
8. ENG MODE switch — IDLE.
9. Engine power lever — IDLE.

ENGINE

### CAUTION

Monitor engine start and if any of the following occur:

- light-up is not obtained within 15 seconds;
- abnormal noises are heard;
- TOT increases beyond start limits  
(#1(2) HOT START caution message displayed);
- rotor has not begun to rotate when N1 is 40%;
- N1 or N2 increase beyond start limits;
- engine hangs (stagnation in N1 below 54%);

Abort the engine start and shutdown the engine by setting the appropriate power lever to OFF and release the starting button.

**Note**

If engine hangs at N1 below 54%, slowly move engine power lever forward, if necessary even beyond FLIGHT position, until the engine accelerates. Monitor TOT, N1 and NR. If engine does not accelerate, shutdown engine by setting engine power lever to OFF position and release starting button.

|                        |                                                                                                                                                             |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10. Starting button    | — Push and hold.<br>START and IGN legends vertically displayed on N1 and TOT scales on EDU1.                                                                |
| 11. N1                 | — Note increasing.                                                                                                                                          |
| 12. Engine power lever | — Move forward to obtain light-up.                                                                                                                          |
| 13. TOT                | — Note increasing at light-up. Monitor TOT value and control with slight movements of the engine power lever to ensure TOT transient value is not exceeded. |
| 14. Starting button    | — Release when N1 reaches 50%. START and IGN legends suppressed.                                                                                            |
| 15. Engine power lever | — Set the power as required.                                                                                                                                |

**CAUTION**

The operation at an engine oil pressure up to 200 psi is permitted for a maximum period of 10 minutes.

**Note**

During cold starting conditions, the engine oil pressure can rise up to 200 psi and will decrease as the oil temperature rises.

|                         |                                                |
|-------------------------|------------------------------------------------|
| 16. Engine oil pressure | — When N1 is greater than 40%<br>Check rising. |
|-------------------------|------------------------------------------------|

Continue as per NORMAL ENGINE START procedure, Page 65.

**END**

## ENGINE SHUTDOWN IN MANUAL MODE

This procedure applies in case of ECU failure and consequent reversion to MANUAL mode.

### Note

#1(2) ECU FAIL warning message and MAN legend displayed vertically on the TRQ gauge.

1. ENG GOV switch : MANUAL.

### Note

In the presence of an ECU failure, the engine control system reverts and operates in MANUAL mode regardless of the ENG GOV switch position. However, it is recommended to set the ENG GOV switch to MANUAL for congruence with the mode condition.

2. Engine power lever : IDLE to allow N1 to reduce to approximately 60%.  
: At 60% N1, OFF.
3. ENG MODE switch : OFF.
4. FUEL PUMP switch : OFF. FUEL PUMP 1(2) caution message displayed.

ENGINE

### CAUTION

During shutdown, check that N1 decelerates freely. Note any abnormal noise or rapid rundown.

### CAUTION

If there is evidence of any abnormal TOT increase after shutdown, perform a **DRY MOTORING RUN**, Page 77.

END

## ENGINE OPERATION IN MANUAL MODE

Following a reversion to MANUAL mode (MAN legend displayed vertically on TRQ gauge), the electric stepper motor of the corresponding engine is frozen at its current position, maintaining the engine torque at its current value just prior to MANUAL reversion. In case of failure during transient condition, the pilot should control engine ensuring that parameters stay within operating range. The MANUAL mode control characteristics will vary depending on the engine condition at the time of the reversion to MANUAL mode.

### ONE ENGINE IN MANUAL MODE AND ONE IN AUTO MODE

It is recommended to set the engine which is in MANUAL mode to a suitable fixed power related to the particular flight condition, and let the ECU of the other engine (in AUTO mode) maintain NR.

Monitor engine parameters and maintain within operating limits.

## ENGINE

Any change of fuel flow and consequently of N1 may be accomplished through engine power lever movements. Each engine power lever is motorized and should be operated through the relative ENG TRIM toggle switch on collective grip.

Land as soon as practicable.

### BOTH ENGINES IN MANUAL MODE

In case of critical malfunction of both ECU's (double failure), the pilot shall control both engines in MANUAL mode.

Each electric stepper motor is frozen at its current position and engine power.

Land as soon as practicable.

Perform a running landing, if terrain permits.

## Cruise flight to reach the landing site

### CAUTION

When adjusting collective, monitor N2 to avoid exceeding limits.

**ENG TRIM toggle switches:** Operate to adjust torque of one engine to about 50% of the total torque required for the desired airspeed.

#### Note

To simplify manual control of the engines, only one engine should be adjusted by operating only one toggle switch. Furthermore, avoid adjusting collective and engine at the same time. Transient NR between 95% and 102% is acceptable during adjustments.

#### Note

Avoid torque settings close to engine operating limits.

**Airspeed** : It is recommended to respect OEI Vne limits.

**Manoeuvres** : Avoid any manoeuvre requiring large and rapid changes of torque.

**ENGINE**

## Approach and landing

**Landing gear lever** : DOWN.

**Utility hydraulic system** : Check pressure within limits.

**Nose wheel lock** : ON. (lever up).

**Parking brake** : OFF.

**External lights** : As required.

**Approach** : If GW is 3000 kg or more:  
- Set one engine torque at 40%.

If GW is below 3000 kg:  
- Set one engine torque at 30%.

Use other engine to establish 35 ± 10 KIAS and 400 ft/min max rate of descent at 102% NR.  
Aim for landing area by changing the airspeed and minimize any further power adjustment.

**CAUTION**

When lowering collective, monitor N2 to avoid exceeding limits.

Landing : Gently flare helicopter to minimize ground speed at landing.  
Use collective to cushion touchdown and, if necessary, allow NR to drop down below 95%.  
After touchdown, simultaneously lower collective and reduce both engines at the same time as necessary to maintain NR within limits.

Toe brakes : Apply.

Shutdown : Refer to paragraph **ENGINE SHUTDOWN IN MANUAL MODE**  
Page 93.

---

**END**

---

**ENGINE**

**ENGINE POWER LEVER (PLA) JAMMED PROCEDURE**

1. The engine power lever does not respond (i.e. no movement of the lever).
2. #1(2) PLA MOTOR caution message NOT displayed.

**IF**, when using ENG TRIM  
toggle, no response of the  
relevant engine power lever

**AND**

#1(2) PLA MOTOR  
caution message  
NOT displayed.

**Achieve Safe OEI Flight**

- Pull aft (towards IDLE position) the affected engine power lever.
- Pull strongly enough to break the internal pin holding the engine power lever stepper motor.

Once the stepper motor pin is  
broken, the engine power lever  
is free to be manually moved.

**ENGINE****Set engine power lever as required.**

---

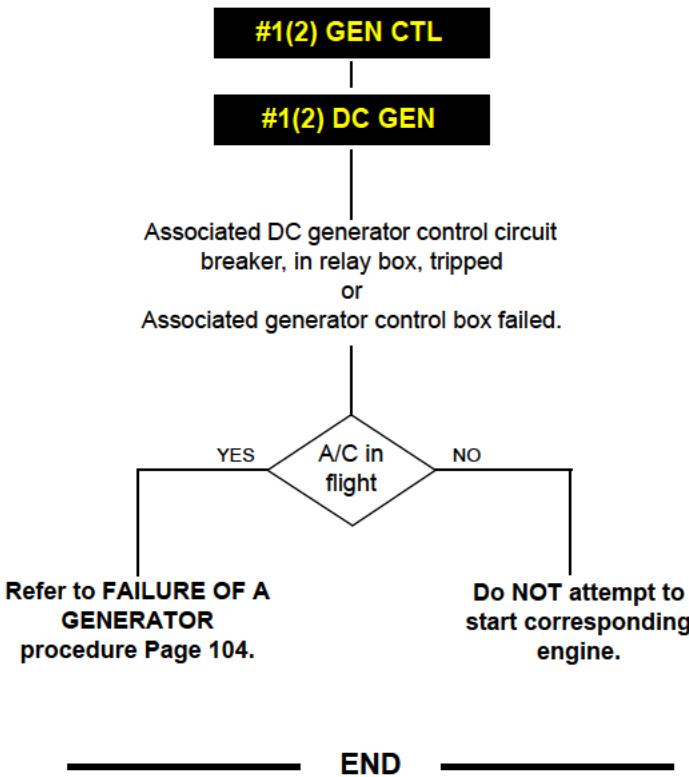
**SECTION END**

---

ENGINE

**This Page Is Intentionally Left Blank**

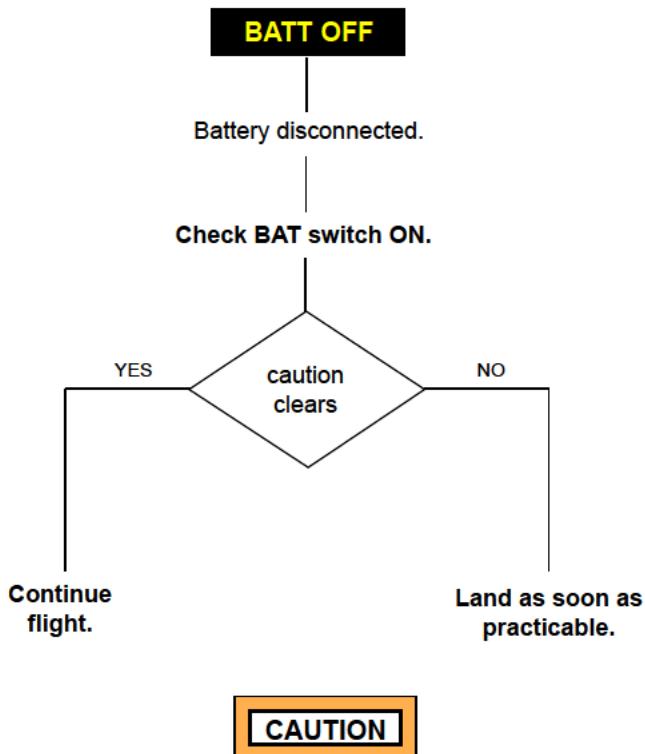
## ELECTRICAL


|                               |            |
|-------------------------------|------------|
| <b>DC GENERATOR CONTROL</b>   | <b>101</b> |
| <b>BATTERY OFF</b>            | <b>102</b> |
| <b>EXTERNAL POWER ON</b>      | <b>103</b> |
| <b>FAILURE OF A GENERATOR</b> | <b>104</b> |
| <b>BUS TIE OPEN</b>           | <b>105</b> |
| <b>GENERATOR OVERLOAD</b>     | <b>106</b> |
| <b>INVERTER FAILURE</b>       | <b>106</b> |

ELEC

**This Page Is Intentionally Left Blank**

**ELEC**


## DC GENERATOR CONTROL



ELEC

END

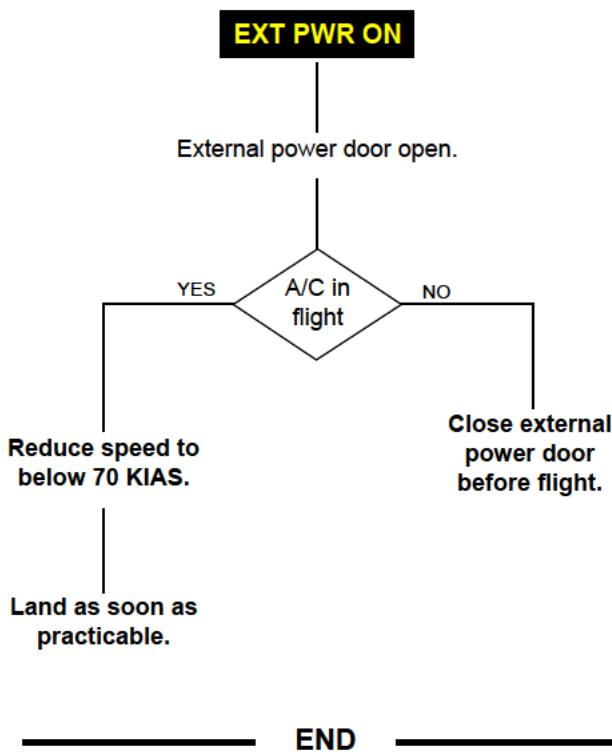
## BATTERY OFF



## CAUTION

With the battery OFF, do NOT attempt an engine restart following an engine flame-out.

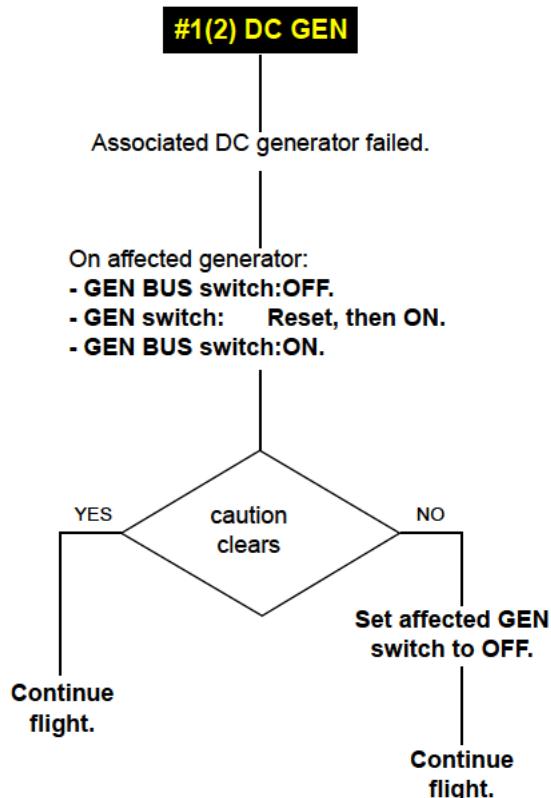
## Note


When external power is connected, the battery is automatically disconnected and the BATT OFF caution message is displayed.

---

END

---


## EXTERNAL POWER ON



ELEC

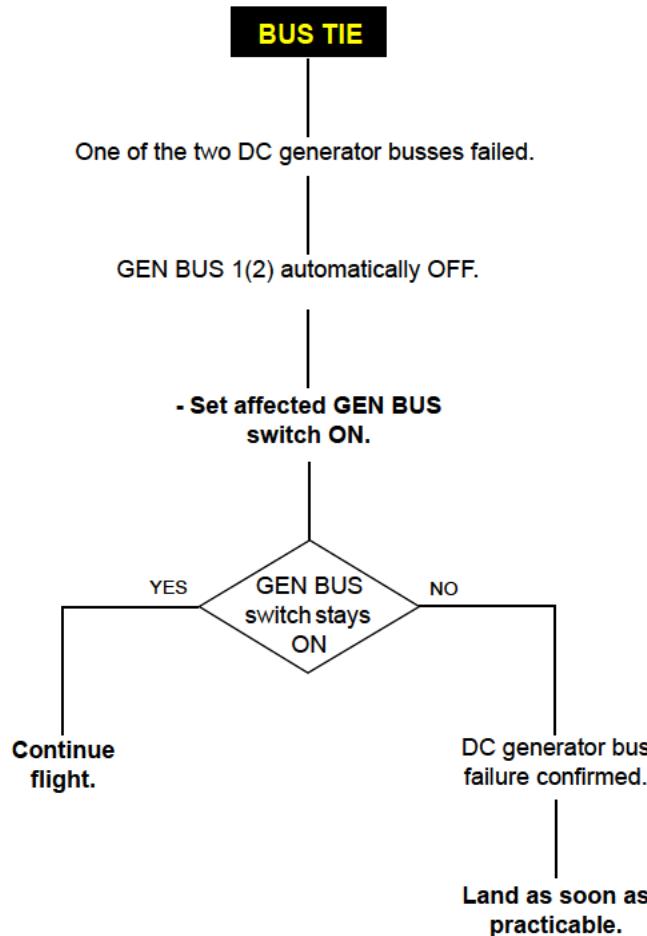
## FAILURE OF A GENERATOR

ELEC

**CAUTION**

Check that remaining generator does NOT exceed load limit.

**Note**


Power is supplied to all loads by remaining generator.

---

END

---

## BUS TIE OPEN



ELEC

## CAUTION

With a Bus Tie open, do NOT attempt an engine restart following an engine flame-out.

---

END

---

## GENERATOR OVERLOAD

**1(2) DC GEN OVLD**

Associated generator in  
overload condition

Reduce electrical load to  
within green range

Continue  
flight.

**END**

## INVERTER FAILURE

**INV 1(2)**

Associated inverter failed.

Also:

**2(1) AP OFF**

+ Audio Tone and Voice Message  
"AUTOPILOT AUTOPILOT"

Confirm affected inverter  
circuit breaker not tripped.

Try to reset affected inverter.

Re-engage affected AP  
channel on APMS panel.

Continue  
flight.

**SECTION END**

ELEC

## HYDRAULIC SYSTEM

|                                                |     |
|------------------------------------------------|-----|
| SERVO HYDRAULIC SYSTEM N°1<br>MALFUNCTION      | 109 |
| SERVO HYDRAULIC SYSTEM N°2<br>MALFUNCTION      | 110 |
| JAMMING OF A MAIN ROTOR SERVO<br>VALVE         | 111 |
| TAIL ROTOR SERVO VALVE JAMMING                 | 112 |
| NORMAL UTILITY HYDRAULIC<br>PRESSURE LOW       | 113 |
| EMERGENCY UTILITY HYDRAULIC<br>PRESSURE LOW    | 114 |
| NORMAL UTILITY HYDRAULIC SYSTEM<br>CHARGING    | 115 |
| EMERGENCY UTILITY HYDRAULIC<br>SYSTEM CHARGING | 115 |

HYD

**This Page Is Intentionally Left Blank**

**HYD**

## SERVO HYDRAULIC SYSTEM N°1 MALFUNCTION

**SERVO 1**

N°1 Servo hydraulic system failed.

Possible

**1 AP Y FAIL** + **2 AP Y FAIL**

Check N°1 servo hydraulic system pressure on EDU2.

YES  
Continue flight monitoring system pressure.

pressure above 1200 psi

NO

- Gradually reduce airspeed below 90 KIAS.
- Avoid pull-up manoeuvres and bank angles above 25 deg to maintain acceptable loads.
- Avoid rapid movements of flight controls.

**WARNING**

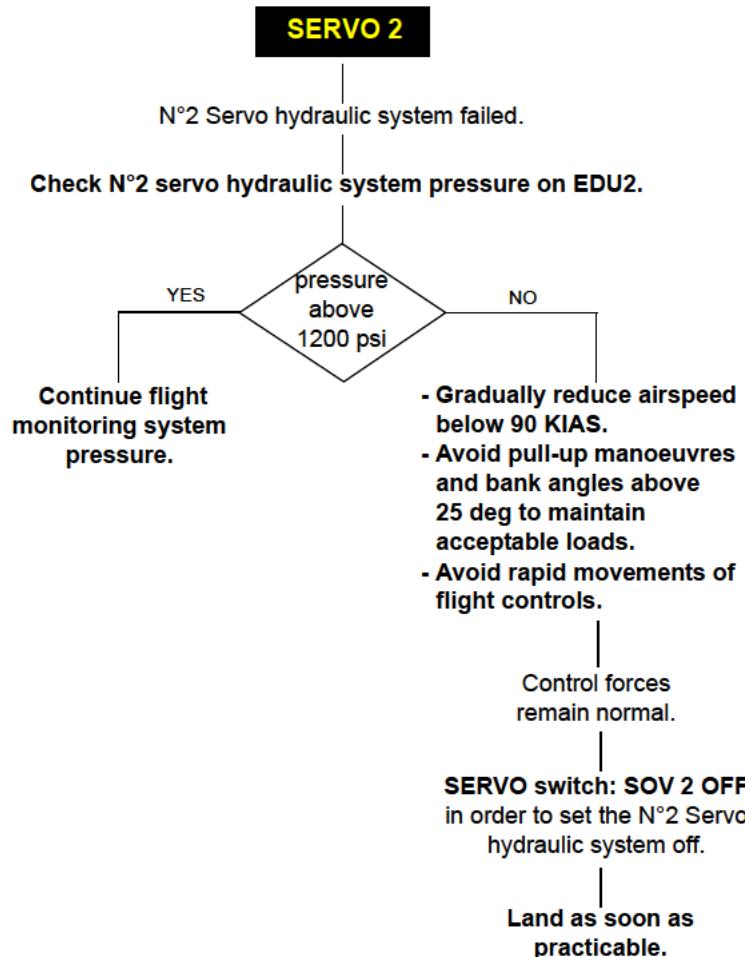
Following the pressure loss of N°1 main servo hydraulic system, avoid landing and/or operating in conditions which require a high degree of control activity such as confined areas or out-of-wind hovering, particularly with wind from right.

**SERVO switch: SOV 1 OFF** in order to set the N°1 Servo hydraulic system off.

Land as soon as practicable.

HYD

**Note**


Pedals will tend to move to zero thrust position (Right pedal slightly more forward than the left pedal). Control force on pedals will increase in hover and in forward flight.

---

END

---

## SERVO HYDRAULIC SYSTEM N°2 MALFUNCTION

**Note**

In the event of pressure loss in N°2 main hydraulic system, sufficient pressure remains in the accumulator of the normal utility hydraulic system for one extension of the landing gear and to operate the toe brakes and the rotor brake.

---

END

---

## JAMMING OF A MAIN ROTOR SERVO VALVE

**MAIN RTR SERVO**

A servo valve in one of the 3 main rotor servo actuators is jammed.

- Gradually reduce airspeed below 90 KIAS.
- Avoid pull-up manoeuvres.
- Avoid bank angle above 25 deg.
- Avoid rapid movement of the cyclic and collective controls.

Land as soon as practicable.

When on the ground, conduct **HYDRAULIC SYSTEMS CHECK** as described in Section **“NORMAL PROCEDURES”**.

If servo valve jamming is confirmed, do NOT resume flight.

HYD

---

END

---

## TAIL ROTOR SERVO VALVE JAMMING

Possible

1 AP Y FAIL

+

2 AP Y FAIL

Procedure:

- Gradually reduce airspeed below 90 KIAS.
- Avoid pull-up manoeuvres.
- Avoid bank angle above 25 deg.
- Avoid rapid movement of the cyclic and collective controls.

Land as soon as  
practicable.

## WARNING

Following the loss of tail rotor servo actuator avoid landing and/or operating in conditions which require a high degree of manoeuverability (i.e. avoid operating in enclosed areas, avoid operation with sideward winds, in particular with wind from the right).

HYD

END

## NORMAL UTILITY HYDRAULIC PRESSURE LOW

**MAIN UTIL PRES**

Failure of the normal utility hydraulic system.

The pressure in the system is below minimum pressure of 500 psi.

- Select **AUXILIARY** mode on EDU2.
- Confirm low pressure on normal utility system.

IF normal utility pressure below 500 psi:

Reduce speed to 140 KIAS maximum

Perform **EMERGENCY DOWN LANDING GEAR** procedure Page 58 independently of landing gear position.

**WARNING**

HYD

In the emergency accumulator, there is sufficient pressure for one extension of the landing gear, after which there is sufficient pressure to operate the emergency brakes. The parking brake handle is used for the emergency brake system and does not provide differential braking. The toe brakes and the rotor brake are inoperative.

---

END

---

## EMERGENCY UTILITY HYDRAULIC PRESSURE LOW

HYD

## EMER UTIL PRES

Failure of the emergency utility hydraulic system. Pressure in the system is below minimum pressure of 1140 psi.

- Select **AUXILIARY** mode on **EDU2**.
- Check emergency utility system pressure.

IF emergency utility pressure below 1140 psi:

- Maintain **AUXILIARY** mode on **EDU2**.
- Continue flight, carefully monitoring **UTIL NORM** pressure.

IF normal utility pressure below 1140 psi:

Reduce speed to 140 KIAS maximum.

Extend landing gear using the normal procedure.

Continue flight.

---

END

---

## NORMAL UTILITY HYDRAULIC SYSTEM CHARGING

**MAIN UTIL CHRG**

Normal utility hydraulic system  
solenoid valve open.

The normal utility hydraulic system  
is operative.

Continue flight.

**Note**

If the solenoid valve between the normal utility hydraulic system and the N°2 servo hydraulic system is locked open, an external oil leakage in any of the 2 systems will automatically induce failure of the other system.

— END —

HYD

## EMERGENCY UTILITY HYDRAULIC SYSTEM CHARGING

**EMER UTIL CHRG**

Emergency utility hydraulic system  
solenoid valve open.  
The emergency utility hydraulic  
system is operative.

Do NOT take-off.

**Note**

EMER UTIL CHRG is only triggered on ground.

— SECTION END —

**This Page Is Intentionally Left Blank**

**HYD**

## DRIVE SYSTEM

|                                                                                                             |     |
|-------------------------------------------------------------------------------------------------------------|-----|
| MAIN TRANSMISSION OVERTORQUE                                                                                | 119 |
| <hr/>                                                                                                       |     |
| MAIN TRANSMISSION CHIP<br>(HELICOPTERS NOT EQUIPPED WITH<br>PULSED CHIP DETECTOR SYSTEM P/N<br>109-0811-48) | 119 |
| <hr/>                                                                                                       |     |
| MAIN TRANSMISSION CHIP<br>(HELICOPTERS EQUIPPED WITH PULSED<br>CHIP DETECTOR SYSTEM P/N 109-0811-<br>48)    | 120 |
| <hr/>                                                                                                       |     |
| TAIL GEARBOX CHIP (HELICOPTERS<br>NOT EQUIPPED WITH PULSED CHIP<br>DETECTOR SYSTEM P/N 109-0811-48)         | 121 |
| <hr/>                                                                                                       |     |
| TAIL GEARBOX CHIP (HELICOPTERS<br>EQUIPPED WITH PULSED CHIP<br>DETECTOR SYSTEM P/N 109-0811-48)             | 122 |
| <hr/>                                                                                                       |     |
| ROTOR BRAKE SYSTEM DEGRADED                                                                                 | 123 |

DRIVE

**This Page Is Intentionally Left Blank**

**DRIVE**

## MAIN TRANSMISSION OVERTORQUE

**XMSN OVTRQ** + Audio Tone and Voice Message  
"OVERTORQUE"

Transmission torque limit exceeded.

Lower collective to maintain  
torque within limits.

END

## MAIN TRANSMISSION CHIP

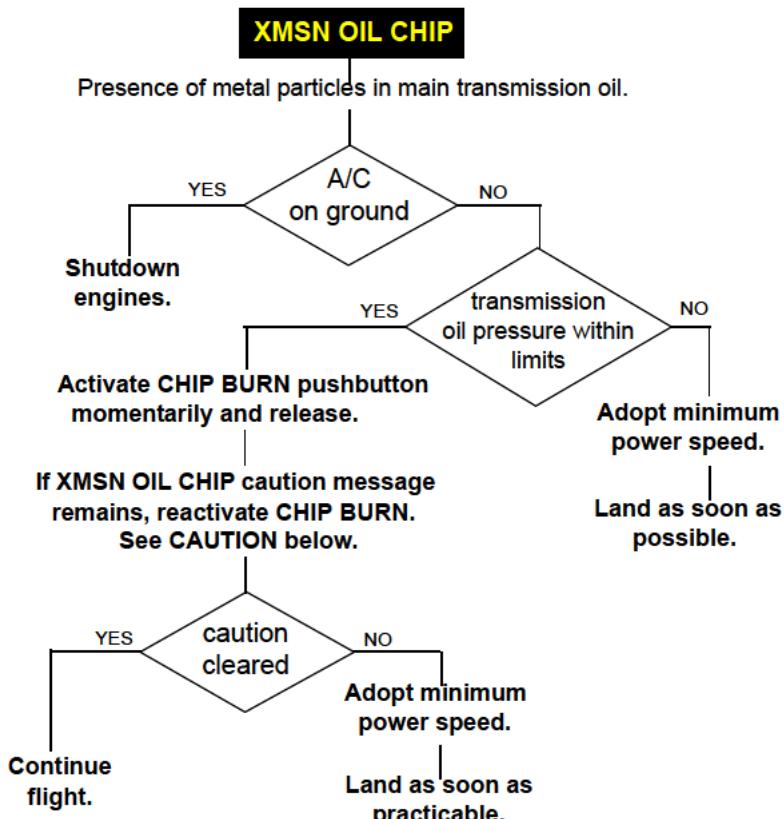
(Helicopters not equipped with pulsed chip detector system  
P/N 109-0811-48)

**XMSN OIL CHIP**

Presence of metal particles in  
main transmission oil.

Reduce power by  
lowering collective.

Monitor XMSN oil pressure  
and temperature.


Land as soon as  
practicable.

DRIVE

END

## MAIN TRANSMISSION CHIP

(Helicopters equipped with pulsed chip detector system  
P/N 109-0811-48)



### CAUTION

A maximum of 3 chip burn activations are permitted per flight to clear the caution.

#### Note

Appropriate log book entry must be made for each message activation.

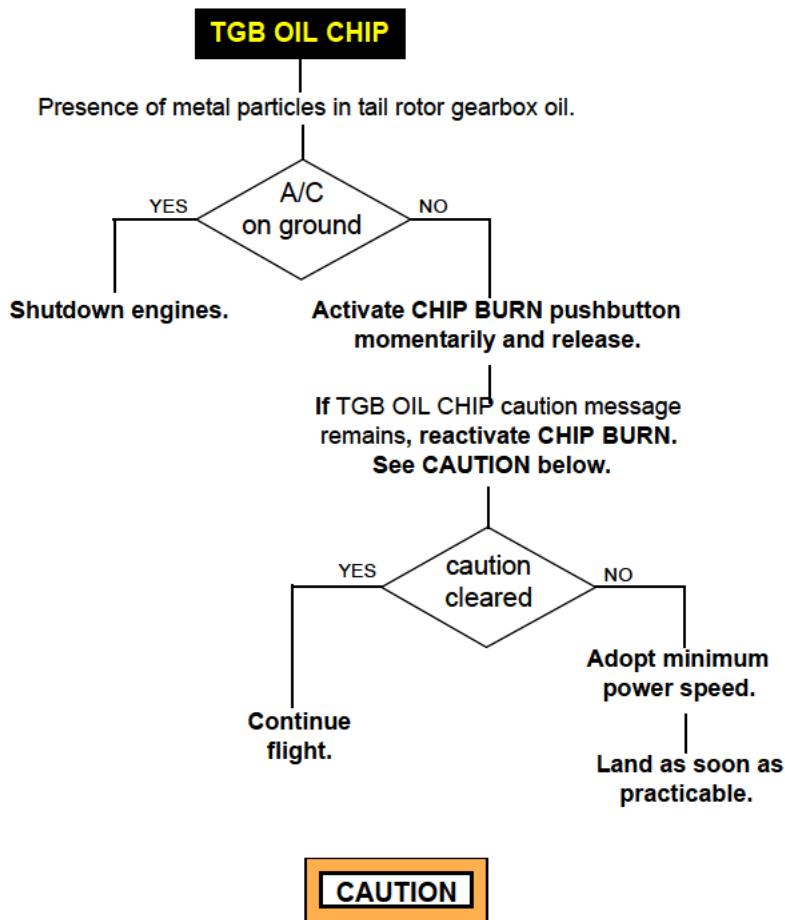
If chip burn activation has been recorded, perform maintenance action as per applicable maintenance manual before next flight.

END

**TAIL GEARBOX CHIP**

(Helicopters not equipped with pulsed chip detector system  
P/N 109-0811-48)

**TGB OIL CHIP**


Presence of metal particles in  
tail rotor gearbox oil.

Reduce power by  
lowering collective.

Land as soon as  
practicable.

**END**

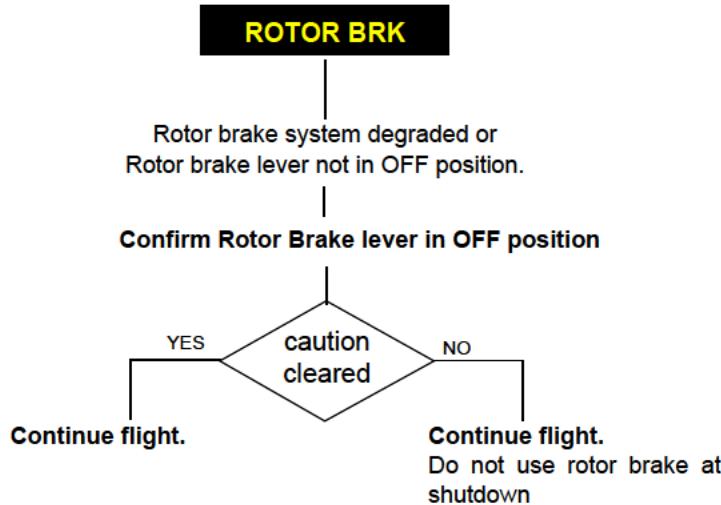
**DRIVE**

**TAIL GEARBOX CHIP**  
(Helicopters equipped with pulsed chip detector system  
P/N 109-0811-48)

A maximum of 3 chip burn activations are permitted per flight to clear the caution.

**Note**

Appropriate log book entry must be made for each message activation.


If chip burn activation has been recorded, perform maintenance action as per applicable maintenance manual before next flight.

---

END

---

## ROTOR BRAKE SYSTEM DEGRADED



---

 SECTION END 

---

DRIVE

**This Page Is Intentionally Left Blank**

**DRIVE**

## FUEL SYSTEM

|                                                              |            |
|--------------------------------------------------------------|------------|
| <b>FUEL LOW</b>                                              | <b>127</b> |
| <hr/>                                                        |            |
| <b>FUEL PRESSURE LOW</b>                                     | <b>128</b> |
| <hr/>                                                        |            |
| <b>FUEL PUMP FAILED AND AIRFRAME<br/>FUEL FILTER CLOGGED</b> | <b>129</b> |
| <hr/>                                                        |            |
| <b>AIRFRAME FUEL FILTER CLOGGED</b>                          | <b>129</b> |
| <hr/>                                                        |            |
| <b>ENGINE FUEL FILTER CLOGGED</b>                            | <b>130</b> |
| <hr/>                                                        |            |
| <b>FUEL LOW SENSOR FAILURE</b>                               | <b>130</b> |
| <hr/>                                                        |            |
| <b>FUEL DRAIN VALVE OPEN</b>                                 | <b>131</b> |

FUEL

**This Page Is Intentionally Left Blank**

**FUEL**

## FUEL LOW

## #1(2) FUEL LOW

On affected tank, usable fuel quantity below 33 kg.

## WARNING

Hovering in crosswinds or sideways flight with sustained roll angles greater than 10 degrees, when FUEL LOW caution message is illuminated, could lead to a single or double engine flame-out.

- Fuel contents:

Check.

- XFEED valve:

Confirm AUTO (valve status Closed).  
(see Note)

Land as soon as  
practicable.

(within time limits stated in the Note below).

## Note

When each engine is supplied fuel from its respective tank, the remaining flight duration is approximately 15 minutes from caution message activation. In the unusual event that both engines are supplied fuel from the same tank, the remaining flight duration is approximately 6 minutes from caution message activation.

FUEL

END

## FUEL PRESSURE LOW

**FUEL PUMP 1(2)**

Associated fuel pump failed or  
Low fuel pressure in associated fuel line.

- **Switch OFF** associated pump.
- **Confirm crossfeed valve opens automatically** (bar horizontal). (XFEED advisory message displayed).

**CAUTION**

With one fuel pump failed (or OFF) and the crossfeed valve open, the fuel in the affected tank (up to 100 kg) will become unusable.

Fuel  
pressure within  
limits

YES Continue flight.

NO

**CAUTION**

Possible fuel leak, be  
attentive for signs of fuel  
leak or loss of engine

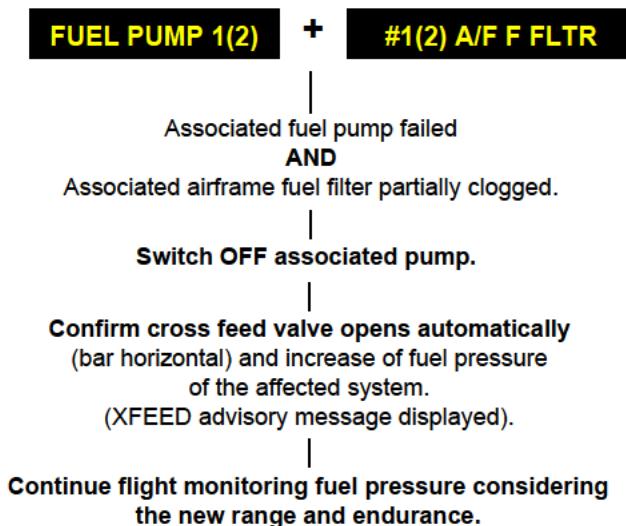
If it is necessary to use the 100 kg  
of unusable fuel in the affected tank  
**AND**  
#1(2) A/F F FLTR caution message  
is NOT displayed

When the indicated fuel quantity in  
either tank is below 100 kg:  
- **Set XFEED VALVE:CLOSED.**  
(Procedure not applicable when  
Aviation Gasoline is used)  
(See Note)

- **Set XFEED VALVE:CLOSED.**  
(See Note)

Land as soon as  
practicable.

**WARNING**


With the crossfeed valve closed, avoid banked turns  
above 30 deg and sustained pitch angle below 0 deg.

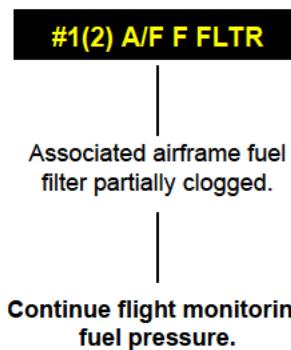
**Note**

When a fuel pump has failed (FUEL PUMP 1(2) caution message displayed), #1(2) FUEL LOW caution message will be activated when fuel in affected tank is between 60 and 70 kg. The unusable fuel will be up to 16 kg.

**END**

## FUEL PUMP FAILED AND AIRFRAME FUEL FILTER CLOGGED

**CAUTION**


With one fuel pump failed and the cross feed valve open,  
a maximum of 100 kg fuel indicated will become  
unusable in the tank with the failed fuel pump.

---

END

---

## AIRFRAME FUEL FILTER CLOGGED



FUEL

---

END

---

## ENGINE FUEL FILTER CLOGGED

## #1(2) FUEL FLTR

Associated engine fuel filter partially clogged.

Continue flight monitoring fuel pressure.

END

## FUEL LOW SENSOR FAILURE

## #1(2) F LOW FAIL

Associated fuel low sensor failure.  
FUEL LOW caution message not available or inconsistent with fuel level.

On affected system:  
- Monitor fuel quantity.

Continue flight.

## WARNING

Hovering in crosswinds or sideways flight with sustained roll angles greater than 10 degrees, when fuel quantity is below 33 Kg, could lead to a single or double engine flame-out.

END

FUEL

## FUEL DRAIN VALVE OPEN

## FUEL DRAIN 1(2)

Associated fuel drain valve open.

Close relevant drain valve, before  
refuelling and/or take-off.

Continue  
flight.

## Note

The FUEL DRAIN 1(2) caution messages can only be activated when the helicopter is on the ground.

---

SECTION END

---

FUEL

**This Page Is Intentionally Left Blank**

**FUEL**

## COMMUNICATION SYSTEM

|                                         |            |
|-----------------------------------------|------------|
| <b>AURAL WARNING SYSTEM FAILURE</b>     | <b>135</b> |
| <b>PILOT'S OR COPILOT'S ICS FAILURE</b> | <b>135</b> |
| <b>MASTER AVIONICS SWITCH FAILURE</b>   | <b>136</b> |
| <b>RADIO TUNING UNIT FAILURE</b>        | <b>137</b> |

COMM

**This Page Is Intentionally Left Blank**

**COMM**

## AURAL WARNING SYSTEM FAILURE

**AWG FAIL**

Aural warning generator system failure.  
Loss of aural warnings and audio tones.

Continue flight monitoring CAS system  
as aural warnings and audio tones  
do not function.

---

END

---

## PILOT'S OR COPILOT'S ICS FAILURE

Pilot's or Copilot's ICS (Inter-Communication System) failed

Pilot's/Copilot's ICS:BK-UP.

If ICS problem persists

Pilot's/Copilot's ICS:EMER.

COMM

**Note**

When ICS pilot stations are in BK-UP, they are automatically disconnected from the cabin ICS stations.

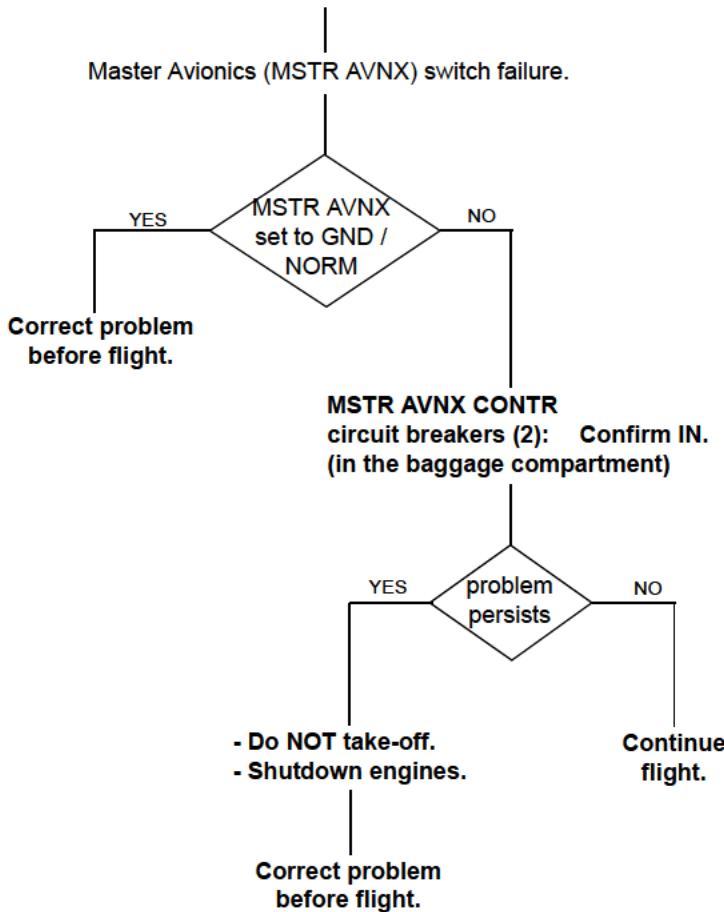
**Note**

When ICS pilot stations are in EMER, they are automatically disconnected from the cabin ICS stations and the HOT MIKE function is not available.

---

END

---


## MASTER AVIONICS SWITCH FAILURE

## Symptoms:

MSTR AVNX set to GND/NORM and equipment connected to these positions not powered.

or

MSTR AVNX set to GND COM and equipment connected to GND position powered.



COMM

END

## RADIO TUNING UNIT FAILURE

RTU1 (2) failure (display becomes blank).

Confirm on active RTU the loss of some active frequencies (---).

Switch off the failed RTU and check that after 5 seconds all systems come back operative on the active RTU.

Continue flight.  
Repair before next flight.

**Note**

In case of loss of both RTUs, operate the EMERG FREQ pushbutton to tune the 121.5 MHz emergency frequency.

————— SECTION END —————

COMM

**This Page Is Intentionally Left Blank**

**COMM**

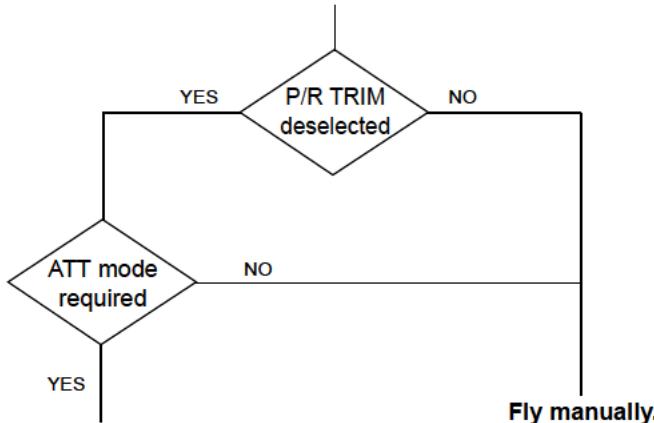
# AUTOMATIC FLIGHT CONTROL SYSTEM

|                                                                                           |     |
|-------------------------------------------------------------------------------------------|-----|
| ATTITUDE MODE OFF                                                                         | 141 |
| AUTOPILOT CAS FAIL                                                                        | 141 |
| AUTOPILOT AHRS FAIL                                                                       | 142 |
| AP DEGRADED (NOT APPLICABLE TO<br>EDU P/N 109-0900-76-2A05 AND SUBS)                      | 143 |
| AP STDBY FAIL (APPLICABLE TO EDU P/<br>N 109-0900-76-2A05 AND SUBS)                       | 144 |
| AUTOPILOT TEST FAIL                                                                       | 145 |
| AFCS PFT PARTIALLY COMPLETED (NOT<br>APPLICABLE TO EDU P/N 109-0900-76-<br>2A05 AND SUBS) | 146 |
| AFCS PFT PARTIALLY COMPLETED<br>(APPLICABLE TO EDU P/N 109-0900-76-<br>2A05 AND SUBS)     | 147 |
| AP CHANNEL FAILURE                                                                        | 148 |
| APMS PANEL FAIL                                                                           | 149 |

AFCS

|                                     |            |
|-------------------------------------|------------|
| <b>MISTRIM</b>                      | <b>149</b> |
| <b>PITCH TRIM FAIL</b>              | <b>150</b> |
| <b>ROLL TRIM FAIL</b>               | <b>150</b> |
| <b>YAW TRIM FAIL</b>                | <b>151</b> |
| <b>COLLECTIVE TRIM FAIL</b>         | <b>151</b> |
| <b>AUTOPILOT OFF</b>                | <b>152</b> |
| <b>AUTOPILOT FAIL</b>               | <b>153</b> |
| <b>AUTOPILOT HOT</b>                | <b>154</b> |
| <b>PITCH AUTOPILOT FAIL</b>         | <b>155</b> |
| <b>ROLL AUTOPILOT FAIL</b>          | <b>155</b> |
| <b>YAW AUTOPILOT FAIL</b>           | <b>156</b> |
| <b>AFCS OSCILLATORY MALFUNCTION</b> | <b>157</b> |

AFCS


## ATTITUDE MODE OFF

**ATT OFF**

ATT mode is unavailable either in pitch or roll axis, due to a fault, and AFCS has reverted to SAS mode on the affected axis.

or

ATT mode, which is the normal condition for flight, is deselected by the P/R TRIM pushbutton on the APMS panel.



END

## AUTOPILOT CAS FAIL

**AP-CAS FAIL**

AFCS CAS messages and audio attention getters are unavailable.

Continue flight, monitoring the flight instruments for indications of AFCS faults and be aware that also "ALTITUDE ALTITUDE" attention getter is inoperative.

AFCS

END

## AUTOPILOT AHRS FAIL

**AP AHRS 1(2) FAIL**

The AFCS is not receiving information from the associated AHRS.  
The associated AP channel disengages and cannot be re-engaged.

- Maximum speed is  $V_{NE}$  (Power-ON) - 40 KIAS.  
Above 500 ft AGL:
  - **Fly attentive.**
- At or below 500 ft AGL:
  - **Fly manually.**

Refer to Section  
“LIMITATIONS”, for  
additional limitations  
with a single AP channel  
engaged.

---

END

---

AFCS

**AP DEGRADED**  
(Not applicable to EDU P/N 109-0900-76-2A05 and subs)

**AP DEGRADED**

Loss of ESIS data.

- Maximum speed is  $V_{NE}$  (Power-ON) - 40 KIAS.

Above 500 ft AGL:

- Fly attentive.

At or below 500 ft AGL:

- Fly manually.

Refer to Section  
“LIMITATIONS”, for  
additional limitations  
with a single AP channel  
engaged.

**CAUTION**

In case of one AHRS failure, both AFCS channels will  
disengage simultaneously.

**END**

AFCS

## AP STDBY FAIL

(Applicable to EDU P/N 109-0900-76-2A05 and subs)

### AP STDBY FAIL

Loss of ESIS data.

- Maximum speed is  $V_{NE}$  (Power-ON) - 40 KIAS.

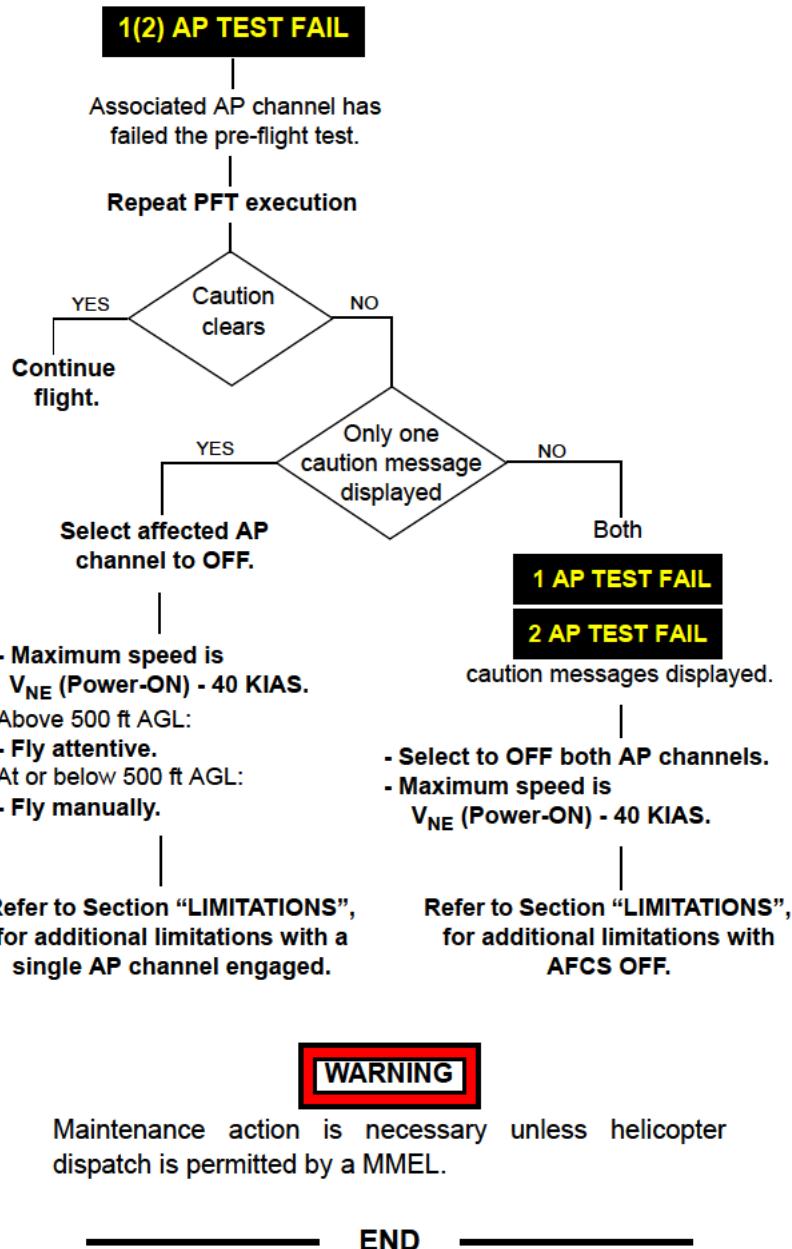
Above 500 ft AGL:

- **Fly attentive.**

At or below 500 ft AGL:

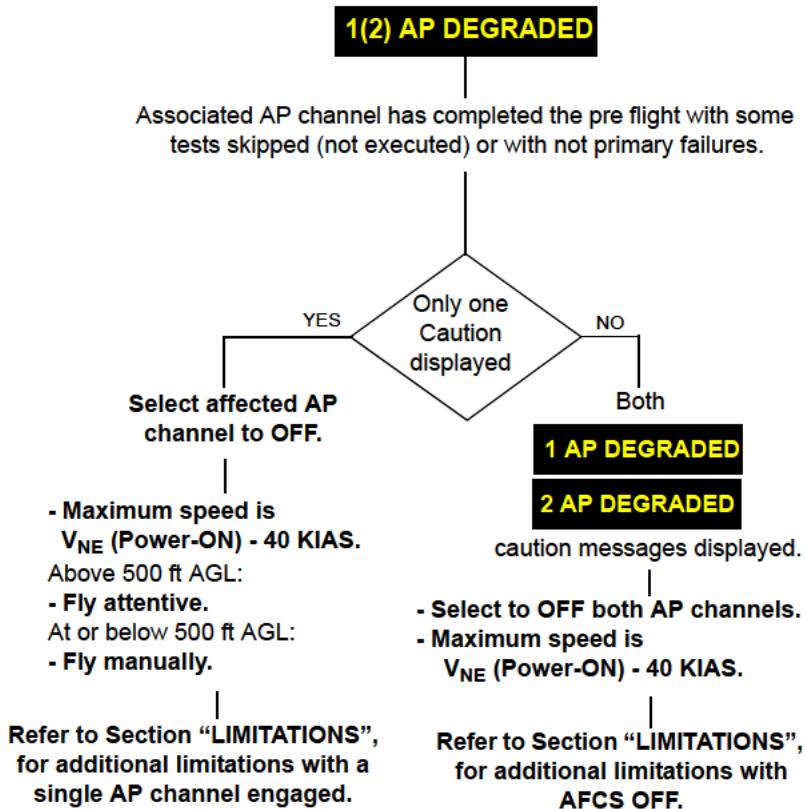
- **Fly manually.**

Refer to Section  
“LIMITATIONS”, for  
additional limitations  
with a single AP channel  
engaged.


### CAUTION

In case of one AHRS failure, both AFCS channels will disengage simultaneously.

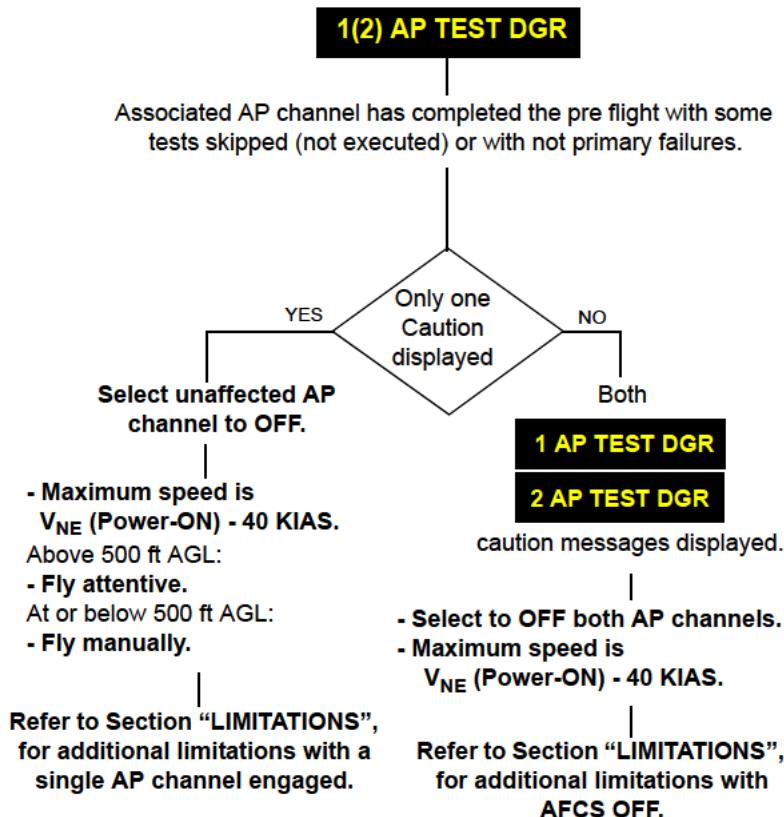
END


AFCS

## AUTOPILOT TEST FAIL



AFCS


**AFCS PFT PARTIALLY COMPLETED**  
(Not applicable to EDU P/N 109-0900-76-2A05 and subs)



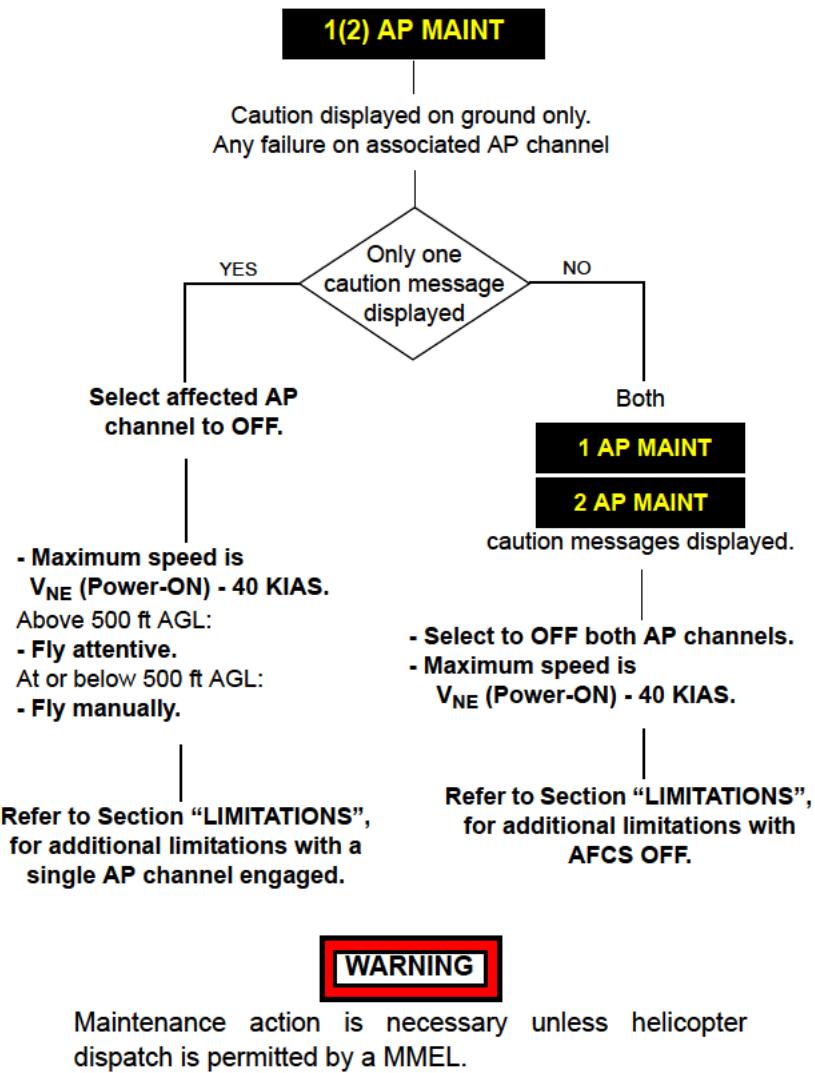
**WARNING**

Maintenance action is necessary unless helicopter dispatch is permitted by a MMEL.

END

**AFCS PFT PARTIALLY COMPLETED**  
(Applicable to EDU P/N 109-0900-76-2A05 and subs)**WARNING**

Maintenance action is necessary unless helicopter dispatch is permitted by a MMEL.


---

END

---

AFCS

## AP CHANNEL FAILURE



AFCS

END

## APMS PANEL FAIL

**APMS PNL FAIL**

Failure of upper mode and FD mode pushbuttons on APMS panel.

Upper modes and FD modes unavailable.

Continue flight.

---

END

---

## MISTRIM

**MISTRIM**

Series actuators not centered.

- Manual centering of series actuators is required.
- Manual centering is achieved by operating the cyclic FTR and pedal switches, when appropriate.
- Continue flight being attentive to AFCS functioning.

AFCS

---

END

---

**PITCH TRIM FAIL****P TRIM FAIL**

AFCS has lost trim actuator drive capability in pitch.

Continue flight being aware that the trim function is unavailable in pitch.

---

END

---

**ROLL TRIM FAIL****R TRIM FAIL**

AFCS has lost trim actuator drive capability in roll.

Continue flight being aware that the trim function is unavailable in roll.

---

END

---

AFCS

## YAW TRIM FAIL

**Y TRIM FAIL**

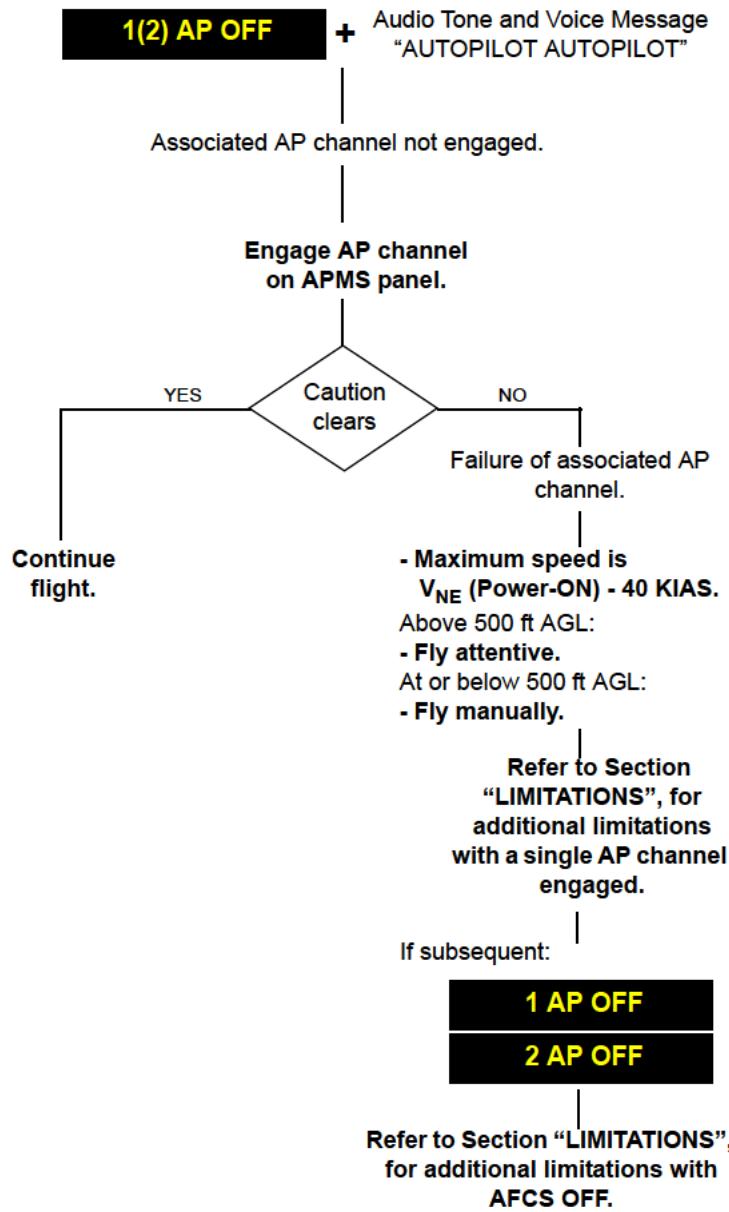
AFCS has lost trim actuator drive capability in yaw.

Continue flight being aware that the trim function is unavailable in yaw.

END

## COLLECTIVE TRIM FAIL

**C TRIM FAIL**


AFCS has lost trim actuator drive capability in collective.

Continue flight being aware that AFCS collective modes are not available.

END

AFCS

## AUTOPILOT OFF



AFCS

END

## AUTOPILOT FAIL

**1(2) AP FAIL****+** Audio Tone and Voice Message  
"AUTOPILOT AUTOPILOT"

Failure of associated AP channel.

Do NOT attempt to re-engage the  
affected AP channel.- Maximum speed is  $V_{NE}$  (Power-ON) - 40 KIAS.

Above 500 ft AGL:

- Fly attentive.

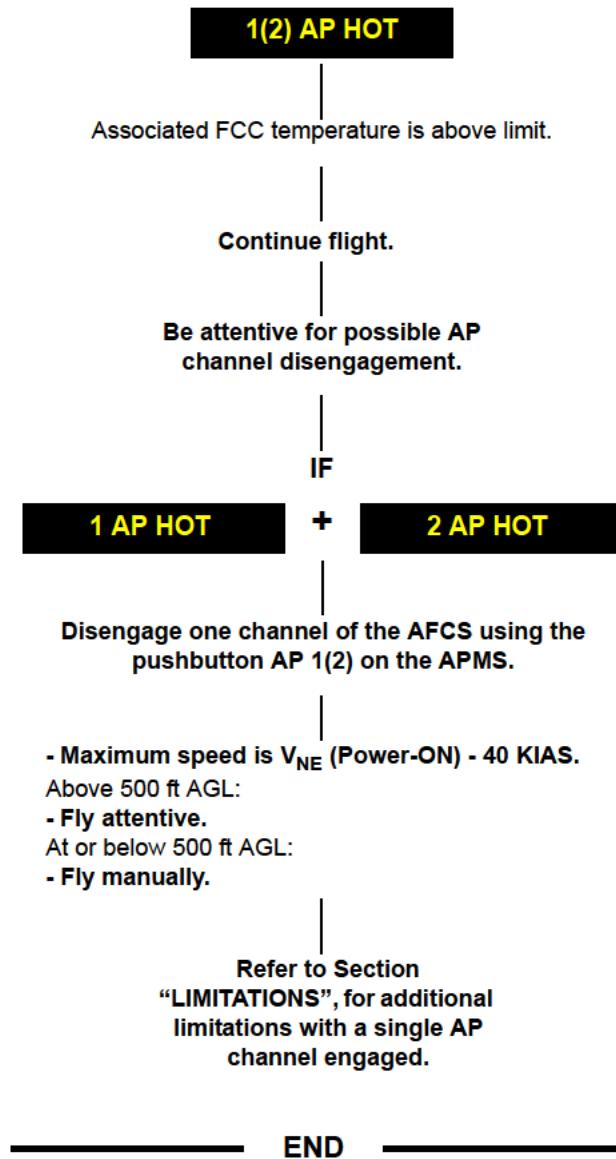
At or below 500 ft AGL:

- Fly manually.

Refer to Section  
"LIMITATIONS", for additional  
limitations with a single AP  
channel engaged.

If subsequent:

**1 AP FAIL****2 AP FAIL**Refer to Section "LIMITATIONS",  
for additional limitations with  
AFCS OFF.


---

END

---

AFCS

## AUTOPILOT HOT



AFCS

---

END

---

## PITCH AUTOPILOT FAIL

**1(2) AP P FAIL****+** Audio Tone and Voice Message  
"AUTOPILOT AUTOPILOT"

Failure affecting a single series actuator in the pitch axis.

- Maximum speed is  $V_{NE}$  (Power-ON) - 40 KIAS.

Above 500 ft AGL:

- **Fly attentive.**

At or below 500 ft AGL:

- **Fly manually.**

Refer to Section  
"LIMITATIONS", for additional  
limitations with a single AP  
channel engaged.

---

END

---

## ROLL AUTOPILOT FAIL

**1(2) AP R FAIL****+** Audio Tone and Voice Message  
"AUTOPILOT AUTOPILOT"

Failure affecting a single series actuator in the roll axis.

- Maximum speed is  $V_{NE}$  (Power-ON) - 40 KIAS.

Above 500 ft AGL:

- **Fly attentive.**

At or below 500 ft AGL:

- **Fly manually.**

Refer to Section  
"LIMITATIONS", for additional  
limitations with a single AP  
channel engaged.

AFCS

---

END

---

## YAW AUTOPILOT FAIL

**1(2) AP Y FAIL**Audio Tone and Voice Message  
"AUTOPILOT AUTOPILOT"

Failure affecting a single series actuator in the yaw axis.

- Maximum speed is  $V_{NE}$  (Power-ON) - 40 KIAS.

Above 500 ft AGL:

- Fly attentive.

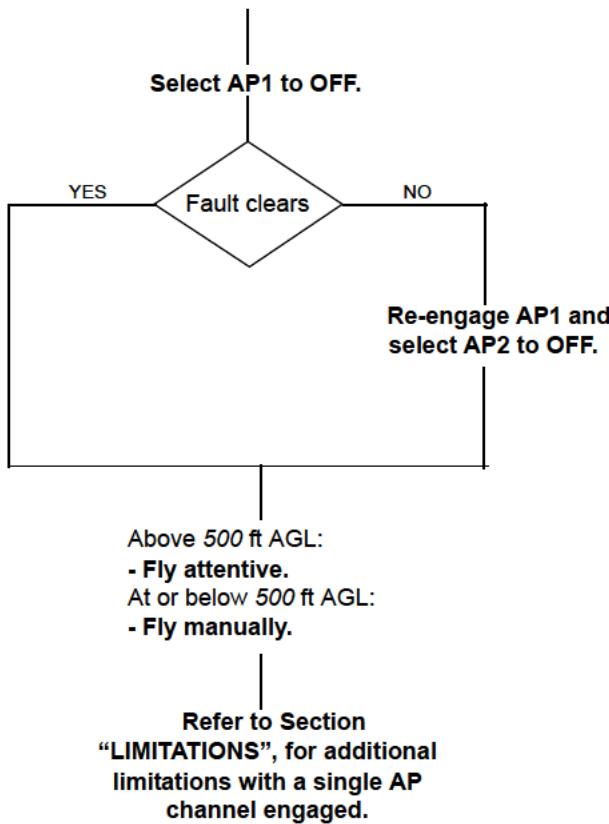
At or below 500 ft AGL:

- Fly manually.

Refer to Section  
"LIMITATIONS", for additional  
limitations with a single AP  
channel engaged.

---

END


---

AFCS

## AFCS OSCILLATORY MALFUNCTION

Repeated disturbances in one or more axes.

- Maximum speed is  $V_{NE}$  (Power-ON) - 40 KIAS.



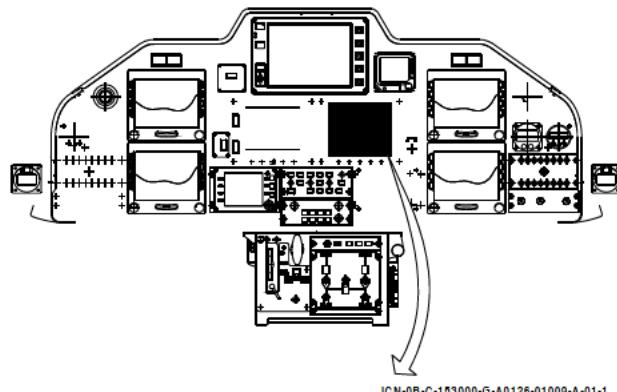
**SECTION END**

AFCS

**This Page Is Intentionally Left Blank**

AFCS

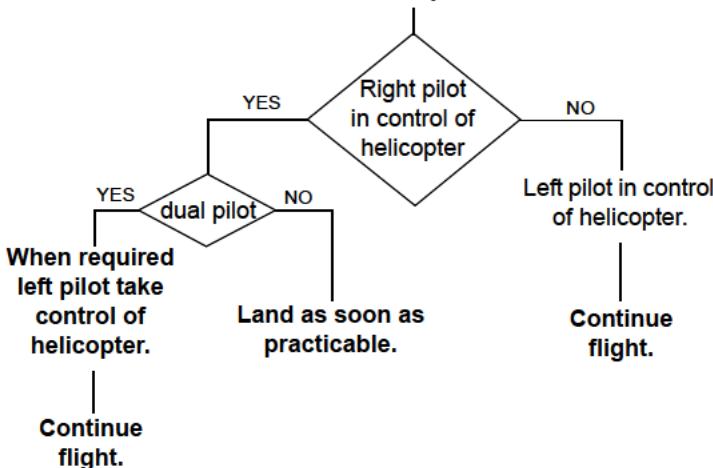
## INTEGRATED DISPLAY SYSTEM


|                                                                                              |     |
|----------------------------------------------------------------------------------------------|-----|
| ELECTRONIC DISPLAY UNIT 1<br>COMPLETE FAILURE                                                | 161 |
| ELECTRONIC DISPLAY UNIT 1<br>DEGRADATION                                                     | 162 |
| ELECTRONIC DISPLAY UNIT 2<br>COMPLETE FAILURE                                                | 163 |
| ELECTRONIC DISPLAY UNIT 2<br>DEGRADATION                                                     | 164 |
| MISCOMPARE OF DAU PRIMARY<br>PARAMETERS                                                      | 165 |
| INCORRECT DAU HARDWARE<br>CONFIGURATION (APPLICABLE TO EDU<br>P/N 109-0900-76-2A05 AND SUBS) | 165 |

EDU

**This Page Is Intentionally Left Blank**

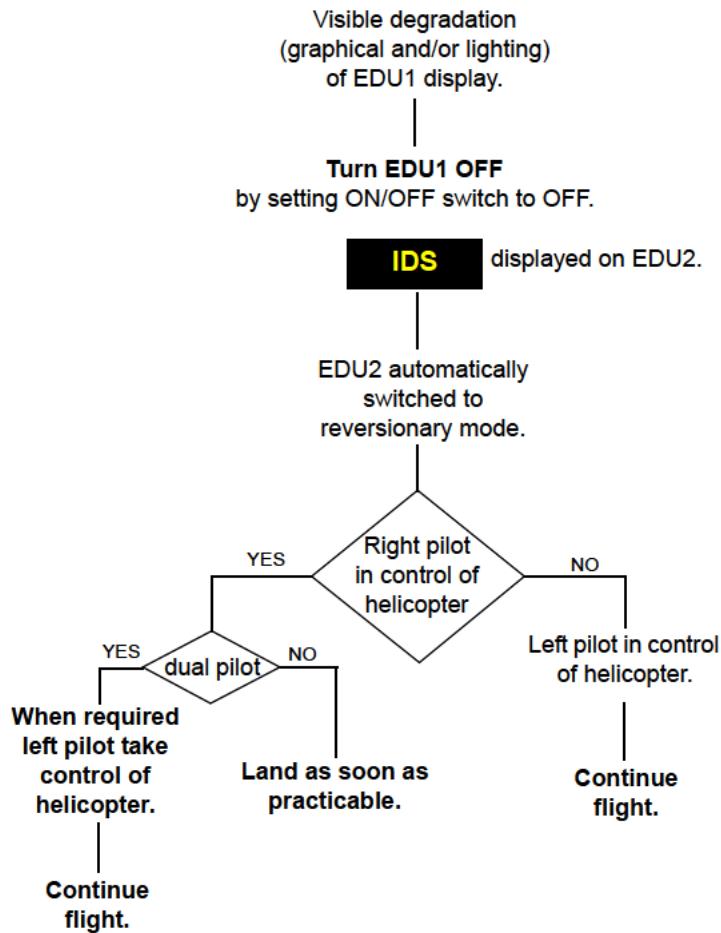
**EDU**


## ELECTRONIC DISPLAY UNIT 1 COMPLETE FAILURE



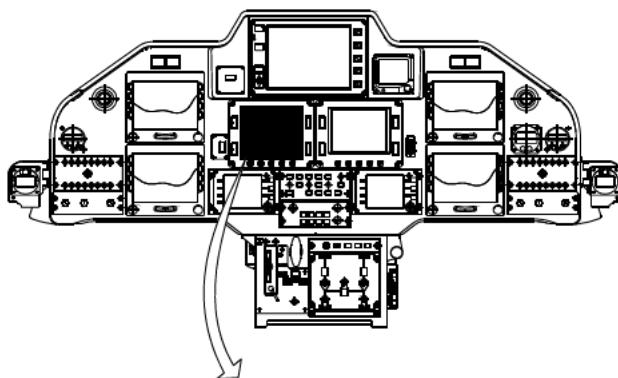
Complete loss of EDU1 display

**IDS** displayed on EDU2.

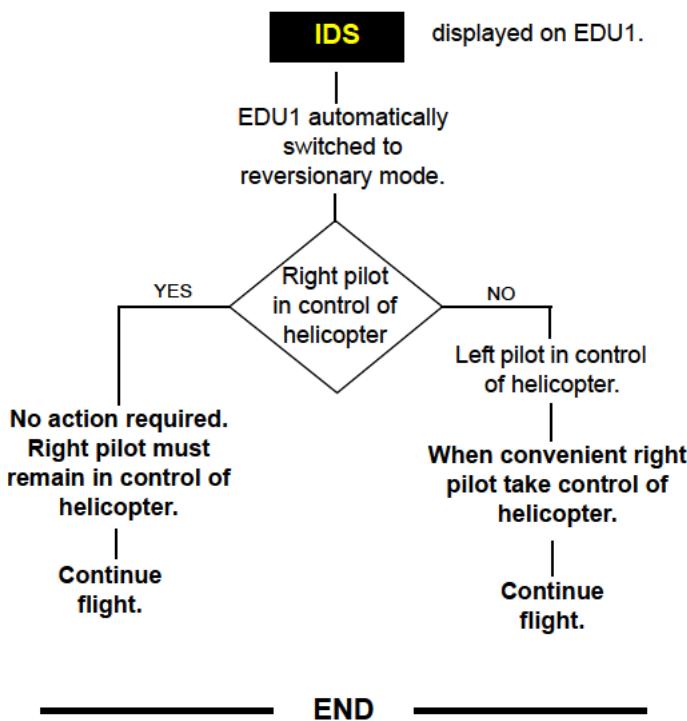

EDU2 automatically switched to reversionary mode.



**END**

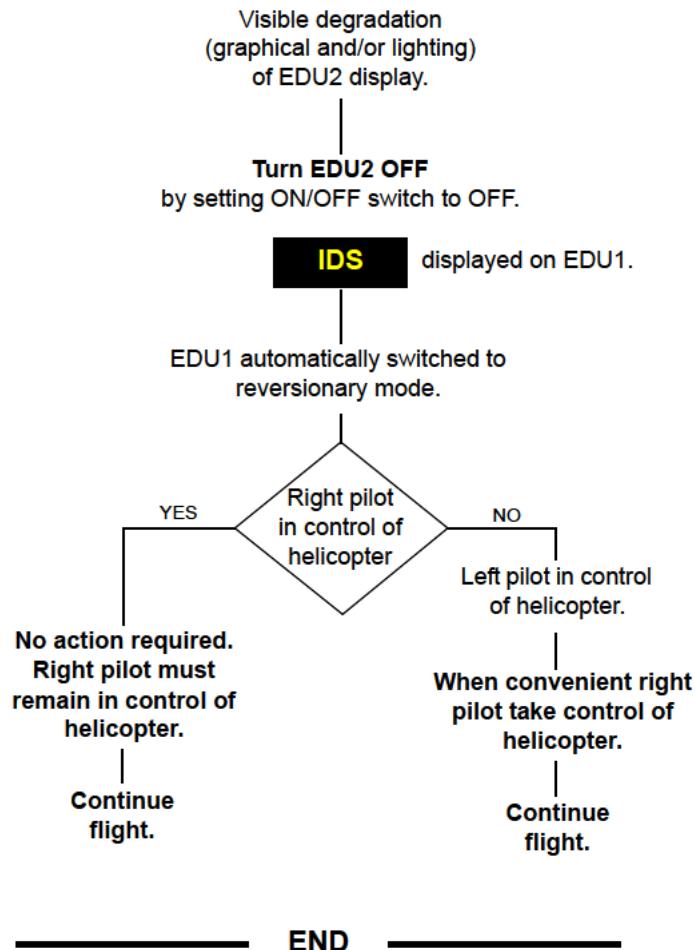

**EDU**

## ELECTRONIC DISPLAY UNIT 1 DEGRADATION




EDU

## ELECTRONIC DISPLAY UNIT 2 COMPLETE FAILURE




Complete loss of EDU2



EDU

## ELECTRONIC DISPLAY UNIT 2 DEGRADATION



EDU

## MISCOMPARE OF DAU PRIMARY PARAMETERS

## DAU MISCMP-P

Miscompare of DAU primary parameters.  
Some primary data from one or both channels  
of Data Acquisition Unit (DAU) are invalid.  
Possible degradation in system functions.

- Access MENU 2/3 page on EDU1 and  
check DAU channels status.
- Select DAU channel indicated by yellow  
legend and check for data discrepancy.
- Deselect affected channel to return to  
normal operation mode.

Continue flight.

END

INCORRECT DAU HARDWARE CONFIGURATION  
(Applicable to EDU P/N 109-0900-76-2A05 and subs)

## CHECK STRAP

IDS hardware configuration incorrect.

Correct configuration before takeoff.

EDU

SECTION END

**This Page Is Intentionally Left Blank**

**EDU**

## EFIS

|                                                                         |            |
|-------------------------------------------------------------------------|------------|
| <b>EFIS CAUTION ANNUNCIATION CAPTIONS</b>                               | <b>171</b> |
| <b>FAILURE OF PILOT'S PFD</b>                                           | <b>174</b> |
| <b>FAILURE OF COPILOT'S PFD</b>                                         | <b>175</b> |
| <b>REBOOT OF PILOT'S (OR COPILOT'S) MFD</b>                             | <b>176</b> |
| <b>MFD BACKGROUND NOISE</b>                                             | <b>177</b> |
| <b>LOSS OF DATA FROM AIR DATA COMPUTER</b>                              | <b>178</b> |
| <b>LOSS OF DATA FROM ATTITUDE HEADING REFERENCE SYSTEM</b>              | <b>179</b> |
| <b>LOSS OF HEADING (FOR EFIS SOFTWARE VERSIONS UP TO 8.0E INCLUDED)</b> | <b>180</b> |
| <b>LOSS OF HEADING (FOR EFIS SOFTWARE VERSIONS 8.0H OR LATER)</b>       | <b>181</b> |
| <b>ALTITUDE DATA DISCREPANCY</b>                                        | <b>182</b> |

EFIS

|                                                 |            |
|-------------------------------------------------|------------|
| <b>PITCH AND ROLL ATTITUDE DATA DISCREPANCY</b> | <b>182</b> |
| <b>IDU OVERTEMPERATURE</b>                      | <b>183</b> |
| <b>SINGLE GPS SYSTEM FAILURE</b>                | <b>184</b> |
| <b>DOUBLE GPS SYSTEM FAILURE</b>                | <b>185</b> |
| <b>GPS LOSS OF INTEGRITY</b>                    | <b>186</b> |
| <b>GPS DATA DISCREPANCY</b>                     | <b>187</b> |
| <b>EXCESSIVE GLIDE SLOPE DISCREPANCY</b>        | <b>187</b> |
| <b>HEADING DATA DISCREPANCY</b>                 | <b>188</b> |
| <b>AIRSPEED DATA DISCREPANCY</b>                | <b>189</b> |
| <b>LOSS OF IDU POWER REDUNDANCY</b>             | <b>189</b> |
| <b>IDU DISCREPANCY ON PILOT SIDE</b>            | <b>190</b> |
| <b>IDU DISCREPANCY ON COPILOT SIDE</b>          | <b>191</b> |
| <b>EFIS EXCESSIVE LOCALISER DISCREPANCY</b>     | <b>192</b> |

---

|                                                     |            |
|-----------------------------------------------------|------------|
| <b>LOSS OF OAT DATA</b>                             | <b>192</b> |
| <hr/>                                               |            |
| <b>RADIO ALTIMETER DATA LOSS</b>                    | <b>193</b> |
| <hr/>                                               |            |
| <b>SCC FAILURE</b>                                  | <b>194</b> |
| <hr/>                                               |            |
| <b>ADS-B TRANSPONDER FAILURE (IF<br/>INSTALLED)</b> | <b>194</b> |

EFIS

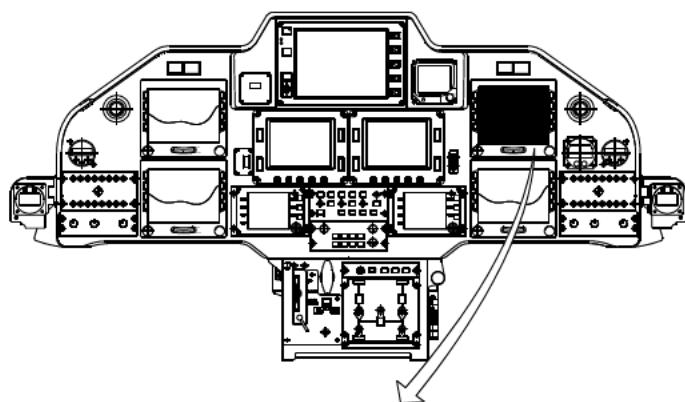
**This Page Is Intentionally Left Blank**

**EFIS**

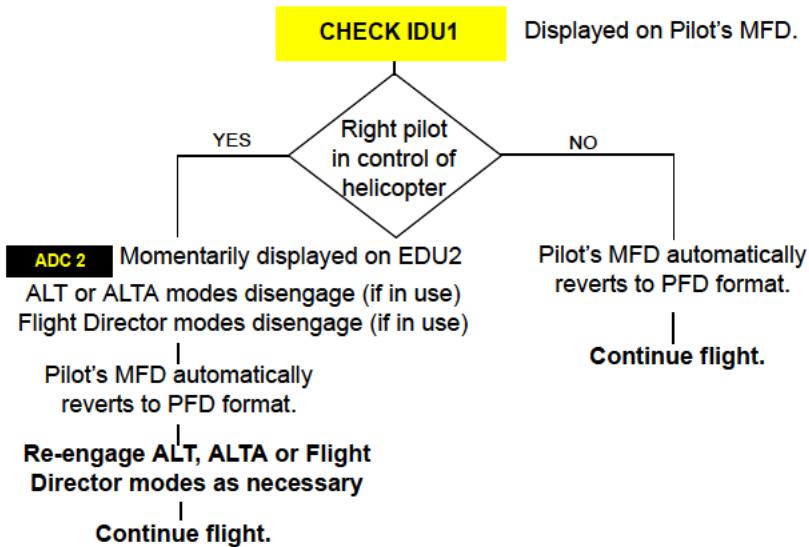
## EFIS CAUTION ANNUNCIATION CAPTIONS

| Flag                                                                 | Aural Annun.   | Page    | Malfunction                                                     |
|----------------------------------------------------------------------|----------------|---------|-----------------------------------------------------------------|
| ADS-B FAIL<br><i>For EFIS SW<br/>versions 8.0E or<br/>later</i>      | -              | 194     | ADS-B out failure. Mode S transponder ADS-B out not available.  |
| ADC1(2) FAIL                                                         | -              | 178     | ADC #1(2) failure.                                              |
| AHRS1(2) FAIL                                                        | -              | 179     | AHRS #1(2) failure.                                             |
| ALT MISCOMP                                                          | -              | 182     | Altitude Miscompare.                                            |
| ATT MISCOMP                                                          | -              | 182     | Attitude Miscompare.                                            |
| CHECK IDU1(2)                                                        | -              | 174/175 | IDU1(2) fail the internal check.                                |
| CPLT MISCOMP<br><i>For EFIS SW<br/>versions 8.0E or<br/>later</i>    | -              | 191     | Co-Pilot side PFD vs MFD Miscompare.                            |
| CPLT1(2) SCC<br><i>For EFIS SW<br/>versions 8.0E or<br/>later</i>    | -              | 194     | Co-Pilot side SCC Failed<br>1 refers to PFD<br>2 refers to MFD. |
| CPLT1(2) OVRTMP<br><i>For EFIS SW<br/>versions 8.0E or<br/>later</i> | -              | 183     | Co-Pilot side IDU overtemperature.                              |
| EFIS COOL<br><i>For EFIS SW<br/>versions up to 7.0F<br/>included</i> | "EFIS Cooling" | 183     | IDU Overtemperature.                                            |
| GPS LOI<br><i>For EFIS SW<br/>versions up to 8.0E<br/>included</i>   | -              | 186     | GPS Loss of Integrity.                                          |
| GPS LON<br><i>For EFIS SW<br/>versions up to 8.0E<br/>included</i>   | -              | 184/185 | GPS Loss of Navigation.                                         |
| GPS1 FAIL                                                            | -              | 185     | GPS #1 Failure.                                                 |
| GPS2 FAIL                                                            | -              | 185     | GPS #2 Failure.                                                 |
| GPS1/2 FAIL                                                          | -              | 185     | GPS #1 and #2 Failure.                                          |
| GPS MISCOMP                                                          | -              | 187     | GPS Miscompare.                                                 |
| GS MISCOMP                                                           | -              | 187     | GlideSlope Miscompare.                                          |

EFIS


| Flag                                                                   | Aural Annun.  | Page    | Malfunction               |
|------------------------------------------------------------------------|---------------|---------|---------------------------|
| HDG MISCOMP                                                            | -             | 188     | Heading Miscompare.       |
| IAS MISCOMP                                                            | -             | 189     | Airspeed Miscompare.      |
| IDU MISCOMP<br><i>For EFIS SW<br/>versions up to 7.0F<br/>included</i> | -             | 190     | PFD vs MFD<br>Miscompare. |
| IDU POWER<br><i>For EFIS SW<br/>versions up to 7.0F<br/>included</i>   | -             | 189     | Power Supply Fail.        |
| LOC MISCOMP                                                            | -             | 192     | Localizer Miscompare.     |
| LOI<br><i>For EFIS SW<br/>versions 8.0H or<br/>later</i>               | -             | 186     | GPS Loss of Integrity.    |
| LON<br><i>For EFIS SW<br/>versions 8.0H or<br/>later</i>               | -             | 184/185 | GPS Loss of Navigation.   |
| NO HEADING<br><i>For EFIS SW<br/>versions up to 8.0E<br/>included</i>  | -             | 179/180 | Heading Failure.          |
| NO GPS<br><i>For EFIS SW<br/>versions up to 7.0F<br/>included</i>      | "GPS Failure" | 184/185 | GPS Failure.              |
| NO POSITION<br><i>For EFIS SW<br/>version to 8.0E</i>                  | -             | 184/185 | GPS and DR Failure.       |
| OAT1(2) FAIL<br><i>For EFIS SW<br/>versions 8.0H or<br/>later</i>      | -             | 192     | OAT Failed.               |
| OAT1(2) SENSOR<br><i>For EFIS SW<br/>version 8.0E</i>                  | -             | 192     | OAT Sensor Failed.        |
| OAT SENSOR<br><i>For EFIS SW<br/>versions up to 7.0F<br/>included</i>  | -             | 192     | OAT Sensor Failed.        |

EFIS

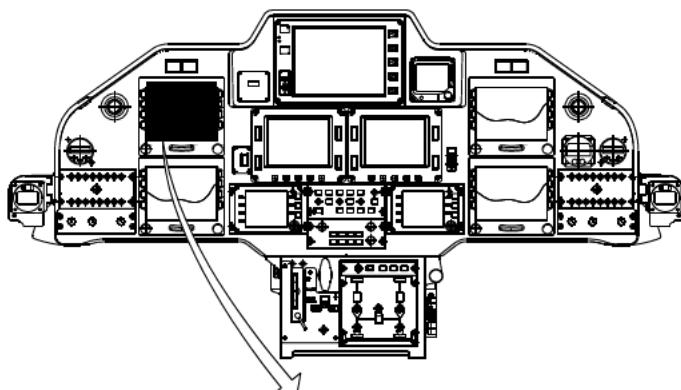

| Flag                                                                   | Aural Annun. | Page | Malfunction                                                              |
|------------------------------------------------------------------------|--------------|------|--------------------------------------------------------------------------|
| PLT MISCOMP<br><i>For EFIS SW<br/>versions 8.0E or<br/>later</i>       | -            | 190  | Pilot side PFD vs MFD<br>Miscompare.                                     |
| PLT1(2) SCC<br><i>For EFIS SW<br/>versions 8.0E or<br/>later</i>       | -            | 194  | Pilot side SCC Failed<br>1 refers to PFD<br>2 refers to MFD.             |
| PLT1(2) OVRTMP<br><i>For EFIS SW<br/>versions 8.0E or<br/>later</i>    | -            | 183  | Pilot side IDU<br>overtemperature<br>1 refers to PFD<br>2 refers to MFD. |
| RADALT FAIL<br><i>For EFIS SW<br/>versions up to 8.0E<br/>included</i> | -            | 193  | Radar Altimeter Failure.                                                 |
| RALT FAIL<br><i>For EFIS SW<br/>versions 8.0H or<br/>later</i>         | -            | 193  | Radar Altimeter Failure.                                                 |
| SCC FAIL<br><i>For EFIS SW<br/>versions up to 7.0F<br/>included</i>    | -            | 194  | SCC Failed.                                                              |

EFIS

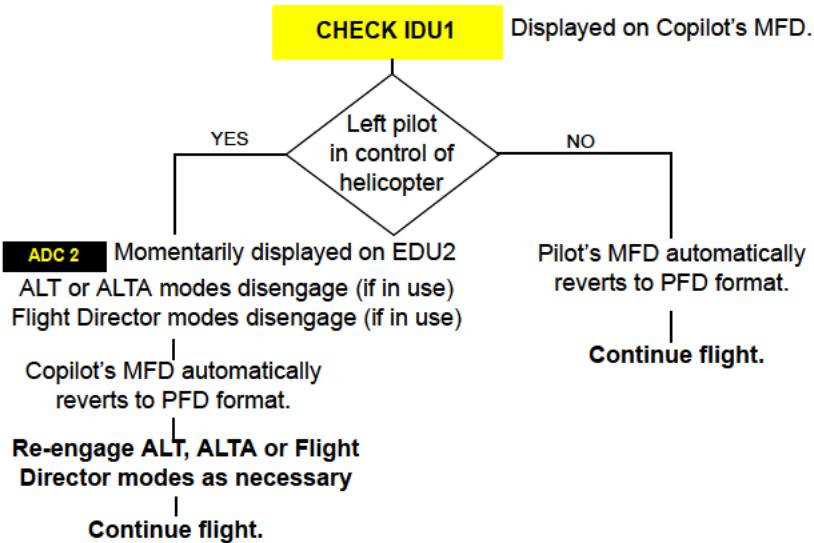
## FAILURE OF PILOT'S PFD



ICN-0B-C-153000-G-A0126-01003-A-01-1


For EFIS with software version A109 7.0D**CAUTION**

Before re-engaging Flight Director modes confirm the selected navigation source has not been changed. Do not continue a Non Precision Approach.


EFIS

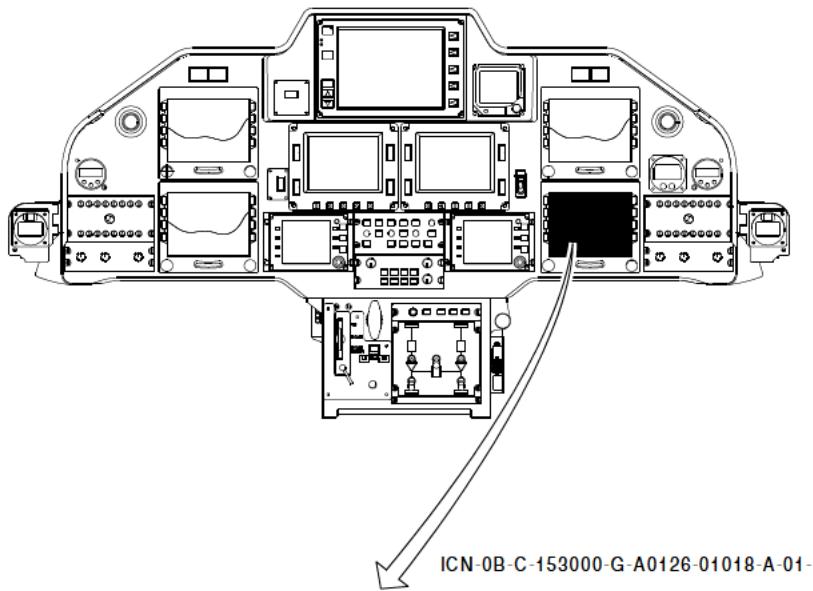
**END**

## FAILURE OF COPILOT'S PFD



ICN-0B-C-153000-G-A0126-01004-A-01-1

For EFIS with software version A109 7.0D**CAUTION**


Before re-engaging Flight Director modes confirm the selected navigation source has not been changed. Do not continue a Non Precision Approach.

EFIS

---

END

---

**REBOOT OF PILOT'S (OR COPILOT'S) MFD**For EFIS with SW version 7.0F or previous

MFD display blank and subsequent MFD restart

- Wait starting sequence to complete  
(Starting sequence will take about 1 minute)

IF flight plan active on FMS

On the RCP, set the ADU knob to the ADU system  
displaying similar data to the ESIS data.

**Note**

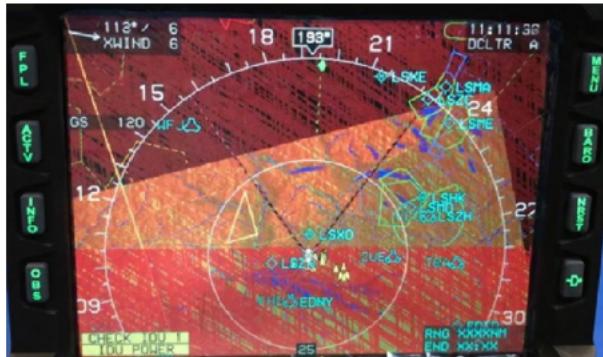
Do not push any button on MFD otherwise the  
flight plan will be deleted.

On PFD:

- Press ACTV soft key twice
- Press "DIRECT TO" soft key
- Press RH Knob.

Continue flight.

EFIS


---

**END**

---

**MFD BACKGROUND NOISE****For EFIS with SW version 8.0E**

Erroneous airspace line segments on pilot or copilot MFD could be displayed flying further than 60 nm from departure (refer to image below)



ICN-0B-C-153000-G-A0126-01019-A-01-1

On affected MFD:

- Verify in MAP mode
- Press MENU soft key
- Press FORMAT soft key
- Rotate RH knob and select FNCT DCLT
- Un-select AIRSPACES
- Rotate RH knob and select DONE.

Continue flight.

**Note**

Following this procedure airspace information are no more available on MFD.

---

END

---

EFIS

## LOSS OF DATA FROM AIR DATA COMPUTER

**ADC1(2) FAIL**

displayed on copilot's and pilot's PFD.

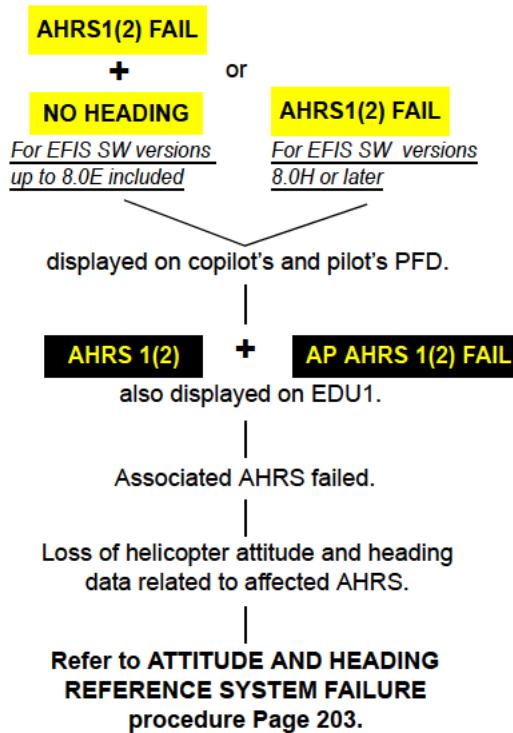
**ADC 1(2)**

also displayed on EDU1.

Associated ADC failed.

Refer to

**AIR DATA UNIT FAILURE**  
procedure Page 202.


---

END

---

EFIS

## LOSS OF DATA FROM ATTITUDE HEADING REFERENCE SYSTEM



---

END

---

EFIS

**LOSS OF HEADING**

(For EFIS software versions up to 8.0E included)

**NO HEADING****+****AHRS 1(2)**

Displayed on EDU1.

**+**

- HDG pointer not available on affected PFD
- "GPS TRK" indication on affected PFD
- HDG readout not available on affected MFD

On the RCP, set the **AHRS** knob to the unaffected **AHRS** system.

Continue flight cross-checking **AHRS** data with the standby instrument.

**Note**

In case of loss of **HEADING** on side in command, **AFCS** Approach modes or **HDG** mode disengage. The modes can be re-engaged as required after system reconfiguration.

---

END

---

**LOSS OF HEADING**

(For EFIS software versions 8.0H or later)

**AHRS 1(2)**

Displayed on EDU1.

+

- HDG pointer not available on affected PFD
- "GPS TRK" indication on affected PFD
- HDG readout not available on affected MFD

On the RCP, set the AHRS knob to the  
unaffected AHRS system.

Continue flight cross-checking AHRS data  
with the standby instrument.

**Note**

In case of loss of HEADING on side in command, AFCS Approach modes or HDG mode disengage. The modes can be re-engaged as required after system reconfiguration.

---

END

---

EFIS

## ALTITUDE DATA DISCREPANCY

## ALT MISCOMP

displayed on pilot's and copilot's PFD.

Altitude data discrepancy between the two ADC.

ALT and ALTA modes disengage.

Compare PFDs' data with the ESIS data.

On the RCP, set the ADU knob to the ADU system displaying similar data to the ESIS data.

Continue flight cross-checking PFD altitude data to the ESIS data.

Re-engage AFCS modes as necessary

END

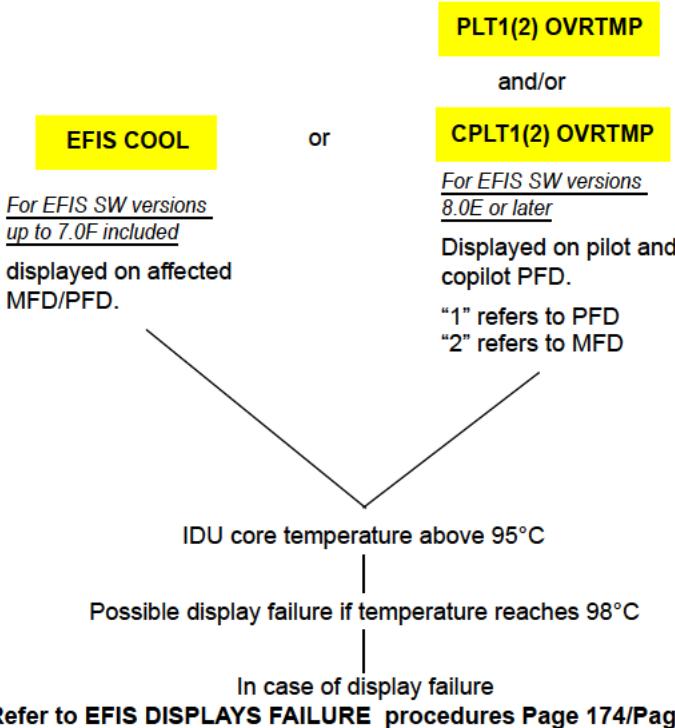
## PITCH AND ROLL ATTITUDE DATA DISCREPANCY

## ATT MISCOMP

displayed on pilot's and copilot's PFD.

Pitch and roll attitude data discrepancy between the two AHRS's.

Compare PFDs' data with the ESIS data.


On the RCP, set the AHRS knob to the AHRS system displaying similar data to the ESIS data.

Continue flight cross-checking PFD pitch and roll attitude data to the ESIS data.

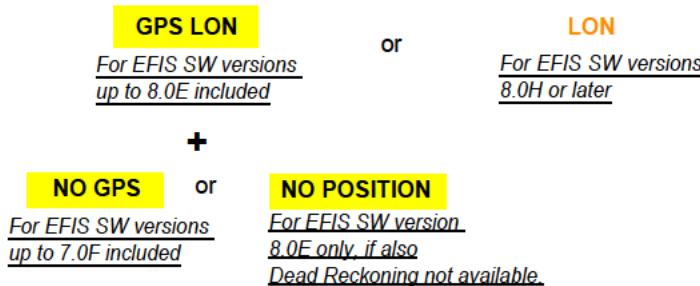
END

EFIS

## IDU OVERTEMPERATURE

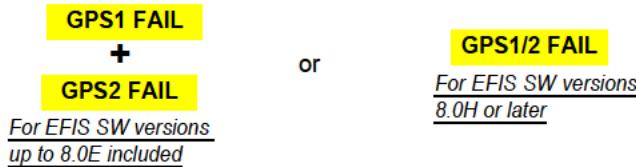


---


END

---

EFIS




## DOUBLE GPS SYSTEM FAILURE



displayed on both pilot's and copilot's PFDs,

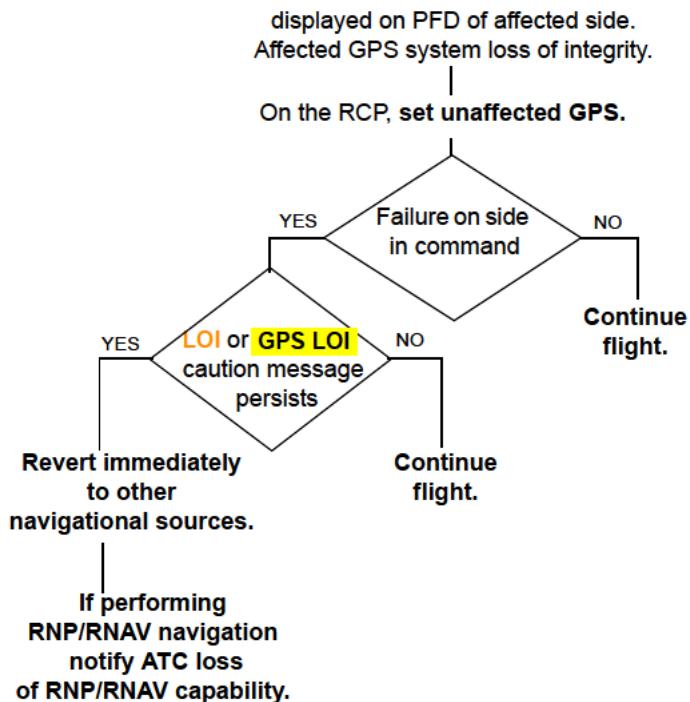
After 5 seconds, displayed on both pilot's and copilot's PFDs,



Both GPS systems failed with loss of FMS navigation.  
TAWS and TERRAIN functions are not available.

Revert immediately to other  
navigational sources.

If performing RNP/RNAV navigation notify ATC  
loss of RNP/RNAV capability.


Continue flight.

END

EFIS

## GPS LOSS OF INTEGRITY

**GPS LOI** or **LOI**  
For EFIS SW versions  
up to 8.0E included For EFIS SW versions  
8.0H or later



## Note

**SAME NAV** and **SAME GPS** caution messages displayed on both pilot's and copilot's PFD.  
 TAWS and TERRAIN functions on affected side may not be available.

END

## GPS DATA DISCREPANCY

## GPS MISCOMP

displayed on pilot's and copilot's PFD.

Excessive discrepancy between the two GPS units data.

On the RCP, set the GPS knob to the GPS system displaying valid data.

Continue flight.

END

## EXCESSIVE GLIDE SLOPE DISCREPANCY

## GS MISCOMP

displayed on pilot's and copilot's PFD.

Excessive discrepancy between the two glide slope's data.

Confirm that both ILS receivers are tuned to the same frequency.

If both receivers are tuned to same frequency:  
Abort ILS approach.

END

EFIS

## HEADING DATA DISCREPANCY

## HDG MISCOMP

displayed on pilot's and copilot's PFD.

Heading data discrepancy between the two AHRS. The HDG, HOV, LOC/NLOC, GS/NGS, VOR, VAPP, NAV and GA modes may disengage/decouple. If NAV mode is engaged the ALT, ALTA, VS, RHT and IAS modes disengage and NAV mode decouples.

Compare PFDs' data with Stand-by magnetic compass data.

On the RCP, set the AHRS knob to the AHRS system displaying similar data to the Stand-by magnetic compass data.

Re-engage/Re-couple AFCS modes as necessary

## Note

For AFCS installations previous to P/N 109-0774-04-0A07 (included), the HDG, HOV, LOC/NLOC, GS/NGS, VOR, VAPP, NAV and GA modes may not be available/ coupled. The ALT, ALTA, VS, RHT and IAS modes are available only if NAV mode is not engaged.

Continue flight cross-checking PFD heading data to the Stand-by magnetic compass data.

## CAUTION

Do not use the SRCH LT during heading comparison.

END

EFIS

## AIRSPEED DATA DISCREPANCY

## IAS MISCOMP

displayed on pilot's and copilot's PFD.

Airspeed data discrepancy between the two ADCs.  
Upper Modes and Flight Director Modes will disengage.

Compare PFDs' data with  
ESIS data.

On the RCP, set the ADU knob to the ADU system  
displaying similar data to ESIS data.

Re-engage AFCS Modes as necessary.

Continue flight cross-checking PFD airspeed  
data to the ESIS data.

---

END

---

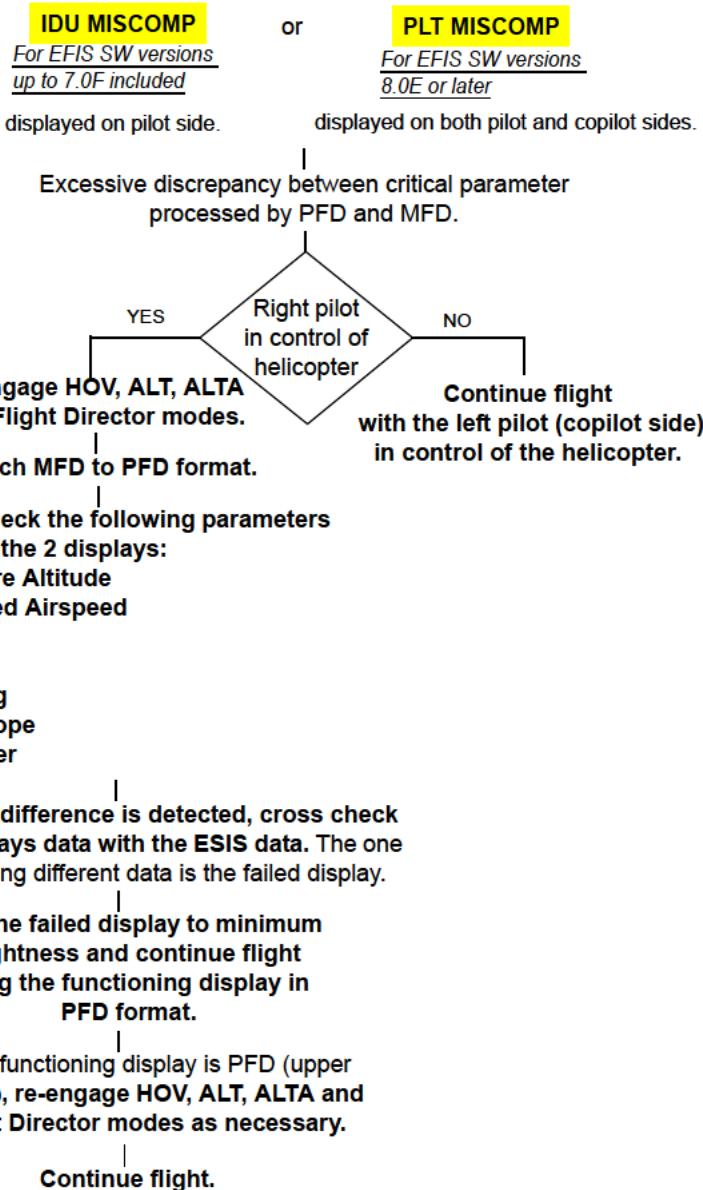
## LOSS OF IDU POWER REDUNDANCY

## IDU POWER

*For EFIS SW versions  
up to 7.0F included*

affected display has lost power redundancy.

Continue flight.

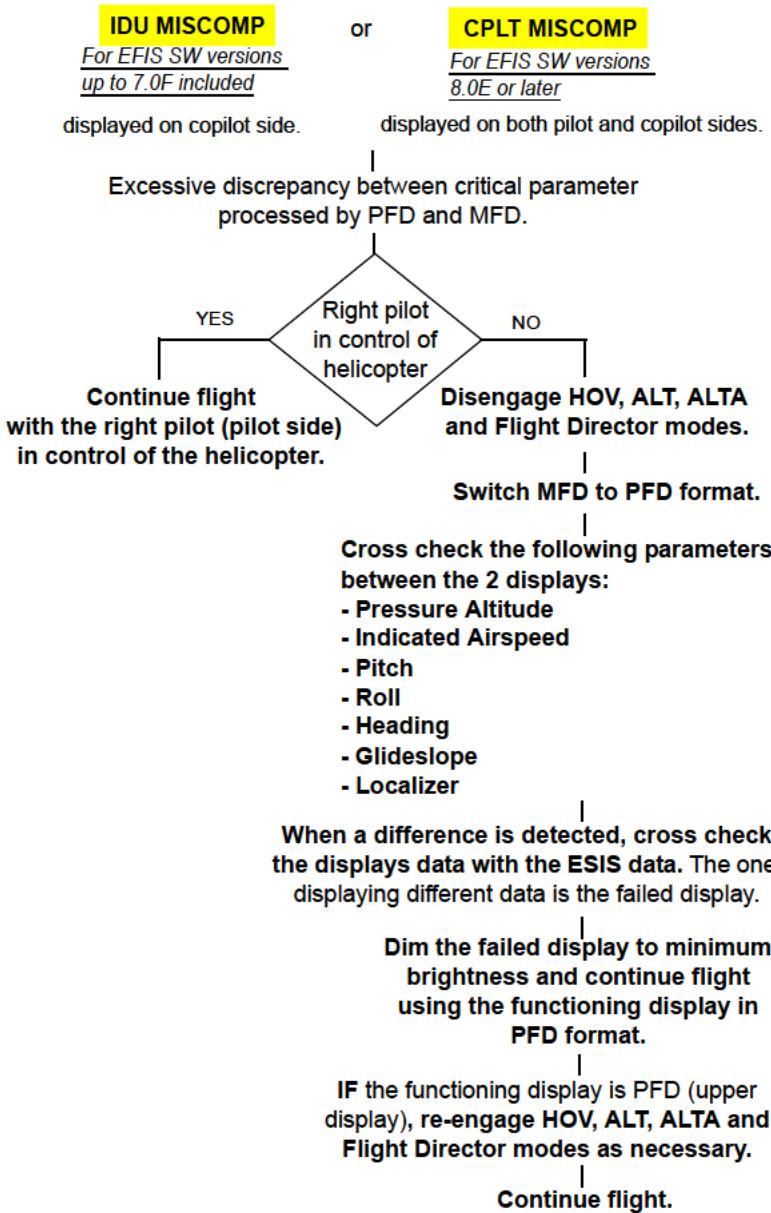

---

END

---

EFIS

## IDU DISCREPANCY ON PILOT SIDE




---

END

---

## IDU DISCREPANCY ON COPILOT SIDE



---

END

---

EFIS

## EXCESSIVE LOCALISER DISCREPANCY

## LOC MISCOMP

displayed on pilot's and copilot's PFD.

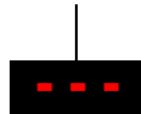
Excessive discrepancy between  
the two localiser's data.Confirm that both ILS receivers are  
tuned to the same frequency.If both receivers are tuned to the same frequency:  
Abort ILS approach.

END

## LOSS OF OAT DATA

## OAT SENSOR

For EFIS SW versions  
up to 7.0F included


## OAT1(2) SENSOR

For EFIS SW version  
8.0E

## OAT1(2) FAIL

For EFIS SW versions  
8.0H or later

displayed on pilot's and/or copilot's PFD.



also displayed on EDU2.

Loss of OAT data.

On the RCP, set the ADU knob to the ADU  
system displaying valid OAT data.

## Note

When there is a loss of OAT data, the "AIRSPEED" voice  
caution will be activated at the lowest value of  $V_{NE}$  for the  
current pressure altitude.

EFIS

END

## RADIO ALTIMETER DATA LOSS

**RADALT FAIL***For EFIS SW versions  
up to 8.0E included*

or

**RALT FAIL***For EFIS SW version 8.0H or later*

displayed on pilot's and copilot's PFD.

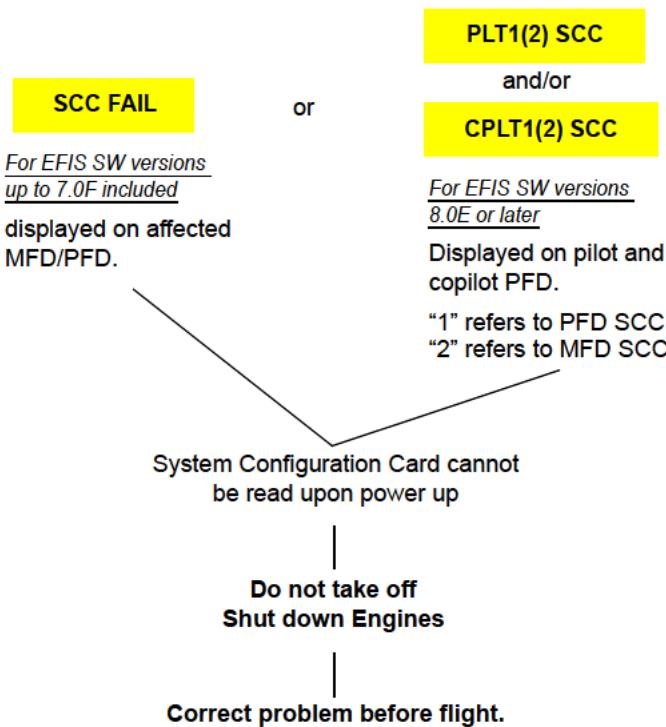
Loss of radio altimeter height data on a PFD.

RHT mode disengage and LOC/NLOC, GS/NGS modes may be  
degraded (if in use).

Refer to barometric altimeter

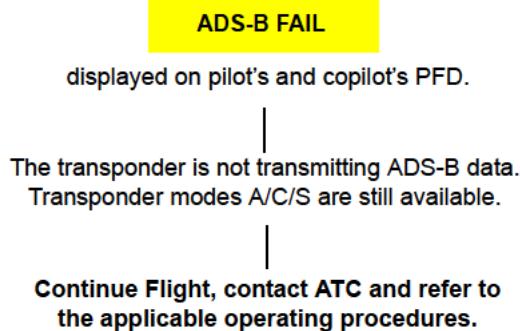
Continue flight.

**CAUTION**Below 2500 ft AGL, height data can still be provided by  
GPS systems (height data followed by a "G") or by the  
ADC systems (height data followed by a "B").


---

END

---


EFIS

## SCC FAILURE



END

## ADS-B TRANSPONDER FAILURE (IF INSTALLED)



EFIS

SECTION END

## VARIOUS

**DOOR OPEN** 197

---

**BAGGAGE COMPARTMENT DOOR OPEN** 198

---

**PARKING BRAKE ON (NOT APPLICABLE  
TO EDU P/N 109-0900-76-2A05 AND SUBS)** 198

---

**PITOT HEAT FAILED** 199

---

**COCKPIT FAN FAILED** 199

---

**EFIS FANS FAILED** 200

---

**LANDING GEAR RETRACTED** 200

---

**LANDING GEAR FAILS TO RAISE** 201

---

**AIR DATA UNIT FAILURE** 202

---

**ATTITUDE AND HEADING REFERENCE  
SYSTEM FAILURE** 203

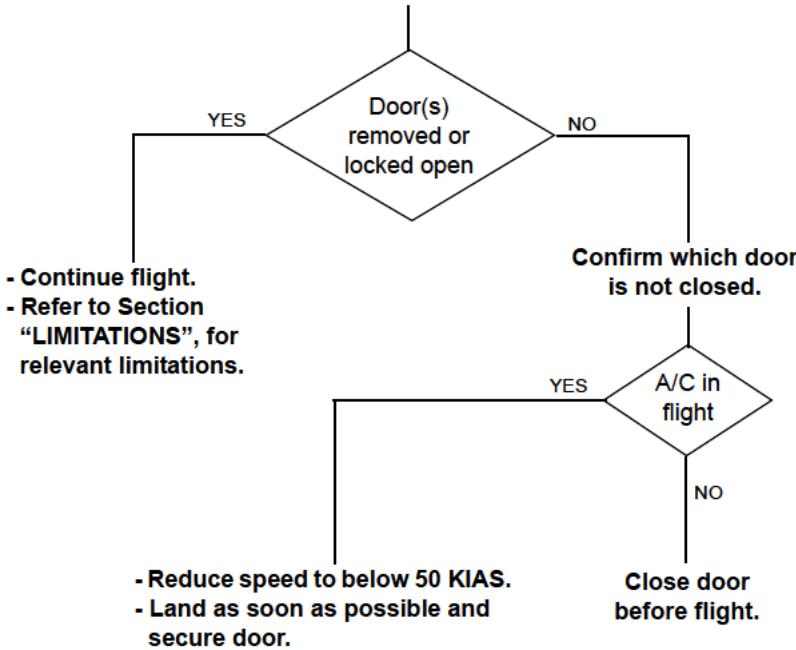
---

VARIOUS

---

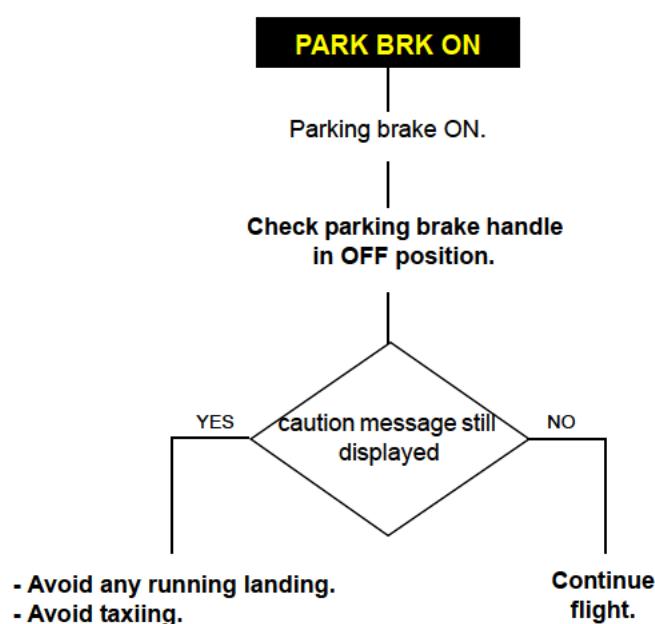
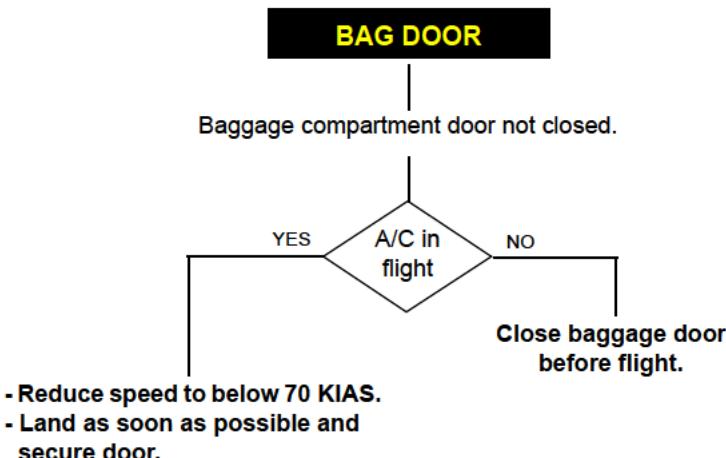
|                                                       |            |
|-------------------------------------------------------|------------|
| <b>VNE EXCEEDED</b>                                   | <b>204</b> |
| <b>DEVIATION FROM SELECTED ALTITUDE/<br/>HEIGHT</b>   | <b>204</b> |
| <b>DEVIATION FROM ABOVE TO BELOW MIN<br/>ALTITUDE</b> | <b>204</b> |

---


## DOOR OPEN

## CABIN DOOR

One or more of the pilot, copilot and cabin doors may not be properly secured.



or

One or both of the pilots or cabin doors are removed or locked open for operational purposes.



END

VARIOUS

**BAGGAGE COMPARTMENT DOOR OPEN**

## PITOT HEAT FAILED

**PITOT 1(2) FAIL**

Associated pitot heat failed.

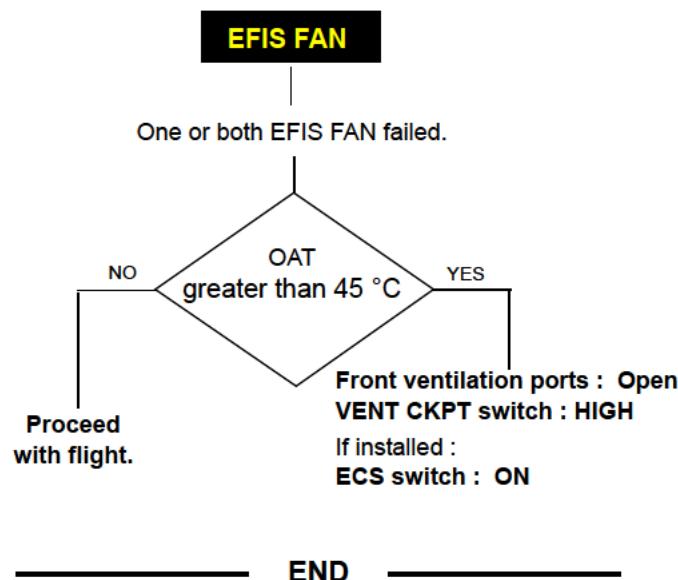
Avoid flight in visible moisture.

Continue flight.

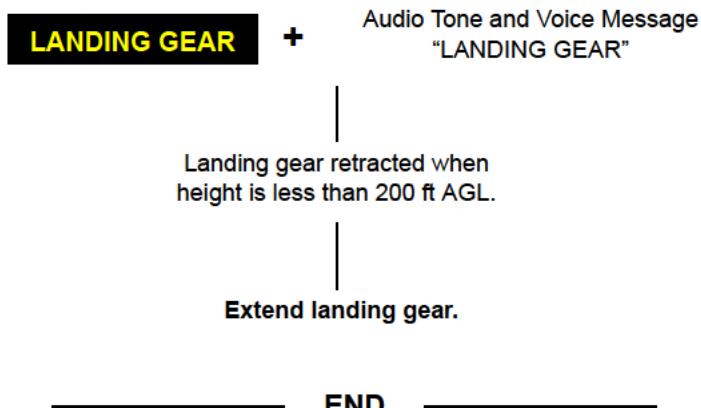
— END —

## COCKPIT FAN FAILED

**COCKPIT FAN**


Cockpit fan failed.

VENT CKPT switch: OFF


— END —

VARIOUS

## EFIS FANS FAILED



## LANDING GEAR RETRACTED



## LANDING GEAR FAILS TO RAISE

Landing gear selected up but one or more green lights or the red light remains illuminated.

Confirm landing gear circuit breakers (2) not tripped.

Check EMER / NORMAL selector NOT in EMER position.

- Cycle landing gear from UP to DOWN.
- Check green lights illuminated.
- Select UP

If one or more green lights or the red light remains illuminated:

Select landing gear DOWN.

Continue flight.  
Maximum speed =  $V_{LE}$  (140 KIAS).

**CAUTION**

The pilot should have due regard to the performance implications of prolonged flight with the landing gear extended.

---

END

---

VARIOUS

## AIR DATA UNIT FAILURE

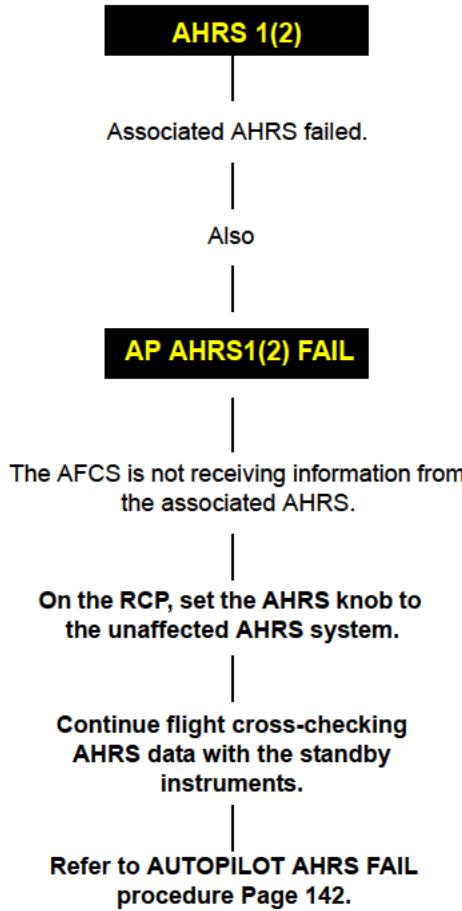
ADC 1(2)

Associated Air Data Unit failed.

On the RCP:

- Set the ADU knob to the unaffected ADU system.
- Set the AHRS knob to the same side.

Continue flight cross-checking  
ADU data with the **ESIS** data.**Note**


In case of loss of ADC on side in command, Upper Modes and Flight Director Modes disengage. The modes can be re-engaged as required after system reconfiguration.

---

END

---

## ATTITUDE AND HEADING REFERENCE SYSTEM FAILURE

**Note**

In case of loss of AHRS on side in command, Upper Modes and Flight Director Modes disengage with the exception of NAV mode. The modes can be re-engaged as required after system reconfiguration.

---

END

---

VARIOUS

**VNE EXCEEDED**

Audio Tone and Voice Message  
"AIRSPEED".

Vne exceeded.

Reduce airspeed  
below Vne.

**END**

**DEVIATION FROM SELECTED ALTITUDE/HEIGHT**

Audio Tone and Voice Message  
"ALTITUDE ALTITUDE".

Excessive deviation of altitude / height with  
respect to the pre-selected value.

Check altitude/height and  
adjust as required.

**END**

**DEVIATION FROM ABOVE TO BELOW MIN ALTITUDE**

Voice Message  
"MINIMUMS, MINIMUMS".

Minimum altitude readout turns  
amber (yellow) and flashes.

Check altitude/height and  
adjust as required.

**SECTION END**

VARIOUS





|                                                                |                                                                    |
|----------------------------------------------------------------|--------------------------------------------------------------------|
| <b>L<br/>I<br/>M<br/>I<br/>T<br/>S</b>                         | GENERAL, TYPE OF OPER, MINIMUM<br>FLT CREW, WEIGHT, CG LIMITATIONS |
|                                                                | AIRSPEED, ALTITUDE,<br>TEMPERATURE, SLOPE LIMITATIONS              |
|                                                                | ENGINE, ROTOR, TRANSMISSION<br>LIMITATIONS                         |
|                                                                | FUEL, LUBRICANTS, HYDRAULICS<br>LIMITATIONS                        |
|                                                                | GENERATOR LOAD, AVIONIC,<br>MISCELLANEOUS LIMITATIONS              |
| <b>P<br/>R<br/>O<br/>C<br/>E<br/>D<br/>U<br/>R<br/>E<br/>S</b> | GEN, FLIGHT PLANNING,<br>PREFLIGHT CHECKS                          |
|                                                                | ENGINE PRE-START CHECKS                                            |
|                                                                | ENGINE START PROCEDURE                                             |
|                                                                | ABORTED ENGINE START<br>PROCEDURE                                  |
|                                                                | DRY MOTORING RUN PROCEDURE                                         |
|                                                                | SYSTEMS CHECKS                                                     |
|                                                                | TAXIING, TAKE OFF                                                  |
|                                                                | IN FLIGHT PROCEDURES                                               |
|                                                                | APPROACH AND LANDING                                               |
|                                                                | SHUTDOWN                                                           |
| <b>P<br/>E<br/>R<br/>F</b>                                     | POST FLIGHT CHECKS,<br>FLIGHT HANDLING                             |
|                                                                | DENSITY ALTITUDE,<br>POWER ASSURANCE CHECKS                        |
|                                                                | HOVER CEILING, ROC, FUEL CONS.,<br>H-V, ALLOWABLE WIND             |
|                                                                |                                                                    |

## USE OF WARNINGS, CAUTIONS AND NOTES

Warnings, Cautions and Notes are used throughout this manual to emphasize important and critical instructions and are used as follows:

### **WARNING**

An operating procedure, practice, etc., which, if not correctly followed, could result in personal injury or loss of life.

### **CAUTION**

An operating procedure, practice, etc., which, if not strictly observed, could result in damage to, or destruction of, equipment.

### **Note**

An operating procedure, condition, etc., which is essential to highlight.

## USE OF PROCEDURAL WORDS

The concept of procedural word usage and intended meaning which has been adhered to in preparing this RFM is as follows:

**“Shall” or “Must”** have been used only when application of a procedure is mandatory.

**“Should”** has been used only when application of a procedure is recommended.

**“May”** has been used only when application of a procedure is optional.

**“Will”** has been used only to indicate futurity, never to indicate a mandatory procedure.

**“Condition”** has been used to determine if the item under examination presents external damage which could jeopardize its safe operation.

**“Secured”** has been used to determine if the item under examination is correctly locked; mainly referred to doors and disconnectable items.

**“Security”** has been used to determine if the item under examination is correctly positioned and installed.

|                                           |   |
|-------------------------------------------|---|
| USE OF WARNINGS, CAUTIONS AND NOTES ..... | 2 |
| USE OF PROCEDURAL WORDS .....             | 2 |

## LIMITATIONS

|                                                                                                               |           |
|---------------------------------------------------------------------------------------------------------------|-----------|
| <b>GENERAL, TYPES OF OPERATION, MINIMUM FLIGHT CREW, NUMBER OF OCCUPANTS, WEIGHT AND CG LIMITATIONS .....</b> | <b>3</b>  |
| GENERAL .....                                                                                                 | 5         |
| TYPES OF OPERATION .....                                                                                      | 5         |
| MINIMUM FLIGHT CREW .....                                                                                     | 5         |
| NUMBER OF OCCUPANTS .....                                                                                     | 5         |
| WEIGHT AND CENTER OF GRAVITY LIMITATIONS .....                                                                | 5         |
| WEIGHT .....                                                                                                  | 5         |
| CENTER OF GRAVITY .....                                                                                       | 5         |
| <b>AIRSPEED, ALTITUDE, TEMPERATURE, SLOPE LIMITATIONS .....</b>                                               | <b>9</b>  |
| AIRSPEED LIMITATIONS .....                                                                                    | 11        |
| GROUND SPEED LIMITATIONS .....                                                                                | 11        |
| ON CONCRETE EVEN SURFACES .....                                                                               | 11        |
| ON UNPREPARED OR UNEVEN SURFACES .....                                                                        | 11        |
| WIND SPEED LIMITATIONS FOR ROTOR                                                                              |           |
| STARTING AND STOPPING .....                                                                                   | 13        |
| ALTITUDE LIMITATIONS .....                                                                                    | 13        |
| AMBIENT AIR TEMPERATURE LIMITATIONS .....                                                                     | 13        |
| SLOPE LIMITATIONS .....                                                                                       | 13        |
| <b>ENGINE, ROTOR, TRANSMISSION LIMITATIONS .....</b>                                                          | <b>15</b> |
| ENGINE LIMITATIONS .....                                                                                      | 17        |
| ENGINE STARTER DUTY CYCLE .....                                                                               | 17        |
| GAS GENERATOR SPEED (N1) .....                                                                                | 17        |
| ALL ENGINES OPERATING (AEO) .....                                                                             | 17        |
| ONE ENGINE INOPERATIVE (OEI) .....                                                                            | 17        |
| POWER TURBINE SPEED (N2) .....                                                                                | 17        |
| ALL ENGINES OPERATING (AEO) .....                                                                             | 17        |
| ONE ENGINE INOPERATIVE (OEI) .....                                                                            | 17        |
| TURBINE OUTLET TEMPERATURE (TOT) .....                                                                        | 18        |
| ENGINE STARTING .....                                                                                         | 18        |
| ALL ENGINES OPERATING (AEO) .....                                                                             | 18        |
| ONE ENGINE INOPERATIVE (OEI) .....                                                                            | 18        |
| ENGINE OIL PRESSURE .....                                                                                     | 18        |

|                                                                                         |           |
|-----------------------------------------------------------------------------------------|-----------|
| ENGINE OIL TEMPERATURE .....                                                            | 19        |
| ROTOR LIMITATIONS .....                                                                 | 19        |
| POWER-ON (AEO) .....                                                                    | 19        |
| POWER-ON (OEI) .....                                                                    | 19        |
| POWER-OFF .....                                                                         | 19        |
| TRANSMISSION LIMITATIONS .....                                                          | 19        |
| TORQUE (TRQ%) (AEO) .....                                                               | 19        |
| TORQUE (TRQ%) (OEI) .....                                                               | 19        |
| TRANSMISSION OIL PRESSURE .....                                                         | 20        |
| TRANSMISSION OIL TEMPERATURE .....                                                      | 20        |
| <b>FUEL, LUBRICANTS, HYDRAULICS LIMITATIONS .....</b>                                   | <b>21</b> |
| FUEL LIMITATIONS .....                                                                  | 23        |
| FUEL PRESSURE .....                                                                     | 23        |
| FUEL QUANTITY .....                                                                     | 23        |
| TOTAL UNUSABLE FUEL .....                                                               | 23        |
| APPROVED FUELS .....                                                                    | 23        |
| EMERGENCY FUELS .....                                                                   | 24        |
| LUBRICANTS LIMITATIONS .....                                                            | 25        |
| AUTHORIZED ENGINE OILS .....                                                            | 25        |
| AUTHORIZED TRANSMISSION OILS .....                                                      | 25        |
| HYDRAULICS LIMITATIONS .....                                                            | 26        |
| MAIN SYSTEM FLUID PRESSURE .....                                                        | 26        |
| NORMAL UTILITY SYSTEM - FLUID PRESSURE .....                                            | 26        |
| EMERGENCY UTILITY SYSTEM - FLUID PRESSURE .....                                         | 26        |
| APPROVED FLUIDS .....                                                                   | 26        |
| <b>GENERATOR LOAD, AVIONIC, MISCELLANEOUS<br/>LIMITATIONS .....</b>                     | <b>27</b> |
| GENERATOR LOAD LIMITATIONS<br>(FOR EACH GENERATOR) .....                                | 29        |
| AVIONIC LIMITATIONS .....                                                               | 29        |
| MAGNETIC COMPASS .....                                                                  | 29        |
| FLIGHT MANAGEMENT SYSTEM .....                                                          | 30        |
| EFIS .....                                                                              | 32        |
| HTAWS .....                                                                             | 33        |
| AUTOMATIC FLIGHT CONTROL SYSTEM .....                                                   | 33        |
| FLIGHT DIRECTOR .....                                                                   | 34        |
| UPPER AND FLIGHT DIRECTOR MODES ENGAGEMENT<br>LIMITS AND MINIMUM USE HEIGHT (MUH) ..... | 34        |
| MISCELLANEOUS LIMITATIONS .....                                                         | 37        |
| ROTOR BRAKE .....                                                                       | 37        |
| BAGGAGE COMPARTMENT .....                                                               | 37        |

|                                    |    |
|------------------------------------|----|
| FUEL MANAGEMENT SYSTEM .....       | 37 |
| PASSENGERS CABIN LIMITATIONS ..... | 37 |
| DOORS OPENED OR REMOVED .....      | 37 |
| SUN GLASSES .....                  | 37 |

## NORMAL PROCEDURES

|                                                                   |           |
|-------------------------------------------------------------------|-----------|
| <b>GENERAL, FLIGHT PLANNING,<br/>PREFLIGHT CHECKS .....</b>       | <b>39</b> |
| GENERAL .....                                                     | 41        |
| FLIGHT PLANNING .....                                             | 41        |
| PREFLIGHT CHECKS .....                                            | 42        |
| <b>ENGINE PRE-START .....</b>                                     | <b>55</b> |
| ENGINE PRE-START CHECKS .....                                     | 57        |
| INITIAL CHECKS .....                                              | 57        |
| ELECTRICAL POWER-UP .....                                         | 57        |
| <b>ENGINE START .....</b>                                         | <b>63</b> |
| ENGINE START .....                                                | 65        |
| NORMAL ENGINE START .....                                         | 65        |
| ENGINE 1 START: .....                                             | 65        |
| ENGINE 2 START: .....                                             | 67        |
| QUICK ENGINE START .....                                          | 68        |
| <b>ABORTED ENGINE START .....</b>                                 | <b>71</b> |
| ABORTED ENGINE START .....                                        | 73        |
| <b>DRY MOTORING RUN .....</b>                                     | <b>75</b> |
| DRY MOTORING RUN .....                                            | 77        |
| <b>SYSTEMS CHECKS .....</b>                                       | <b>79</b> |
| SYSTEMS CHECKS .....                                              | 81        |
| HYDRAULIC SYSTEMS .....                                           | 81        |
| FUEL SYSTEM .....                                                 | 81        |
| ELECTRICAL A.C. SYSTEM .....                                      | 83        |
| RCP .....                                                         | 83        |
| AFCS .....                                                        | 84        |
| MISCELLANEOUS .....                                               | 85        |
| <b>BEFORE TAKE-OFF CHECKS, GROUND TAXIING,<br/>TAKE-OFF .....</b> | <b>87</b> |
| BEFORE TAKE-OFF CHECKS .....                                      | 89        |
| GROUND TAXIING .....                                              | 89        |
| TAKE-OFF .....                                                    | 90        |

|                                                           |            |
|-----------------------------------------------------------|------------|
| HOVER TAKE-OFF .....                                      | 90         |
| ROLLING TAKE-OFF .....                                    | 91         |
| <b>IN FLIGHT .....</b>                                    | <b>93</b>  |
| IN FLIGHT .....                                           | 95         |
| <b>APPROACH AND LANDING .....</b>                         | <b>101</b> |
| APPROACH AND LANDING .....                                | 103        |
| <b>SHUTDOWN .....</b>                                     | <b>105</b> |
| SHUTDOWN .....                                            | 107        |
| <b>POST FLIGHT CHECKS, FLIGHT HANDLING .....</b>          | <b>109</b> |
| POST FLIGHT CHECKS .....                                  | 111        |
| FLIGHT HANDLING CHARACTERISTICS .....                     | 111        |
| ENGINE LIMIT GOVERNING .....                              | 111        |
| CLIMB SPEED .....                                         | 112        |
| AUTOROTATIVE DESCENT .....                                | 112        |
| STEEP APPROACHES AND VERTICAL DESCENT<br>MANOEUVRES ..... | 112        |

## PERFORMANCE

|                                                                                                                            |            |
|----------------------------------------------------------------------------------------------------------------------------|------------|
| <b>DENSITY ALTITUDE, POWER ASSURANCE CHECKS ...</b>                                                                        | <b>113</b> |
| DENSITY ALTITUDE .....                                                                                                     | 115        |
| POWER ASSURANCE CHECKS .....                                                                                               | 116        |
| POWER CHECK INTERVALS .....                                                                                                | 116        |
| <b>HOVER CEILING, RATE OF CLIMB, FUEL<br/>CONSUMPTION, HEIGHT-VELOCITY DIAGRAMS,<br/>OPERATION VS ALLOWABLE WIND .....</b> | <b>119</b> |
| HOVER CEILING .....                                                                                                        | 121        |
| RATE OF CLIMB .....                                                                                                        | 128        |
| FUEL CONSUMPTION AT 3175 KG .....                                                                                          | 145        |
| HEIGHT-VELOCITY DIAGRAMS .....                                                                                             | 147        |
| OPERATION VS ALLOWABLE WIND .....                                                                                          | 151        |

---

## List Of Figures

---

|                                                                                          |     |
|------------------------------------------------------------------------------------------|-----|
| Figure 1-1 (Sheet 1 of 2) Weight, Longitudinal and Lateral CG Envelope (metric) .....    | 6   |
| Figure 1-1 (Sheet 2 of 2) Weight, Longitudinal and Lateral CG Envelope (english) .....   | 7   |
| Figure 1-2 Airspeed Limitations - VNE (Power-ON) .....                                   | 12  |
| Figure 1-3 Pressure altitude / OAT Envelope .....                                        | 14  |
| Figure 2-1 Preflight check sequence .....                                                | 42  |
| Figure 3-1 Density - altitude chart .....                                                | 115 |
| Figure 3-2 Power Assurance Check in Hover .....                                          | 117 |
| Figure 3-3 Power Assurance Check in Flight .....                                         | 118 |
| Figure 3-4 Hover Ceiling - IGE at Take-Off Power - AEO .....                             | 122 |
| Figure 3-5 Hover Ceiling - IGE at Maximum Continuous Power - AEO .....                   | 123 |
| Figure 3-6 Hover Ceiling - OGE at Take-Off Power - AEO .....                             | 124 |
| Figure 3-7 Hover Ceiling - OGE at Maximum Continuous Power - AEO .....                   | 125 |
| Figure 3-8 Hover Ceiling - OGE OEI, 2.5 Minute Power .....                               | 126 |
| Figure 3-9 Hover Ceiling - OGE at Maximum Continuous Power - OEI .....                   | 127 |
| Figure 3-10 Rate of Climb at Take-Off Power - AEO - Gross Weight 2300 kg .....           | 129 |
| Figure 3-11 Rate of Climb at Take-Off Power - AEO - Gross Weight 2600 kg .....           | 130 |
| Figure 3-12 Rate of Climb at Take-Off Power - AEO - Gross Weight 2900 kg .....           | 131 |
| Figure 3-13 Rate of Climb at Take-Off Power - AEO - Gross Weight 3175 kg .....           | 132 |
| Figure 3-14 Rate of Climb at Maximum Continuous Power - AEO - Gross Weight 2300 kg ..... | 133 |
| Figure 3-15 Rate of Climb at Maximum Continuous Power - AEO - Gross Weight 2600 kg ..... | 134 |
| Figure 3-16 Rate of Climb at Maximum Continuous Power - AEO - Gross Weight 2900 kg ..... | 135 |
| Figure 3-17 Rate of Climb at Maximum Continuous Power - AEO - Gross Weight 3175 kg ..... | 136 |

---

|                                                                                             |     |
|---------------------------------------------------------------------------------------------|-----|
| Figure 3-18 Rate of Climb at 2.5 Minute Power - OEI -<br>Gross Weight 2300 kg .....         | 137 |
| Figure 3-19 Rate of Climb at 2.5 Minute Power - OEI -<br>Gross Weight 2600 kg .....         | 138 |
| Figure 3-20 Rate of Climb at 2.5 Minute Power - OEI -<br>Gross Weight 2900 kg .....         | 139 |
| Figure 3-21 Rate of Climb at 2.5 Minute Power - OEI -<br>Gross Weight 3175 kg .....         | 140 |
| Figure 3-22 Rate of Climb at Maximum Continuous Power -<br>OEI - Gross Weight 2300 kg ..... | 141 |
| Figure 3-23 Rate of Climb at Maximum Continuous Power -<br>OEI - Gross Weight 2600 kg ..... | 142 |
| Figure 3-24 Rate of Climb at Maximum Continuous Power -<br>OEI - Gross Weight 2900 kg ..... | 143 |
| Figure 3-25 Rate of Climb at Maximum Continuous Power -<br>OEI - Gross Weight 3175 kg ..... | 144 |
| Figure 3-26 Height - Velocity Diagram - Chart A .....                                       | 148 |
| Figure 3-27 Height - Velocity Diagram - Chart B .....                                       | 149 |
| Figure 3-28 Height - Velocity Diagram - Chart C .....                                       | 150 |
| Figure 3-29 Wind/Ground Speed Azimuth Envelope IGE/OGE -<br>Chart A .....                   | 152 |
| Figure 3-30 Wind/Ground Speed Azimuth Envelope IGE/OGE -<br>Chart B .....                   | 153 |

# GENERAL, TYPES OF OPERATION, MINIMUM FLIGHT CREW, NUMBER OF OCCUPANTS WEIGHT AND CG LIMITATIONS

|                                                     |          |
|-----------------------------------------------------|----------|
| <b>GENERAL</b>                                      | <b>5</b> |
| <hr/>                                               |          |
| <b>TYPES OF OPERATION</b>                           | <b>5</b> |
| <hr/>                                               |          |
| <b>MINIMUM FLIGHT CREW</b>                          | <b>5</b> |
| <hr/>                                               |          |
| <b>NUMBER OF OCCUPANTS</b>                          | <b>5</b> |
| <hr/>                                               |          |
| <b>WEIGHT AND CENTER OF GRAVITY<br/>LIMITATIONS</b> | <b>5</b> |

GEN  
WT/CG

**This Page Is Intentionally Left Blank**

**GENERAL**

This QRH includes information from Basic RFM Sections 1, 2, 3 and limited data from Section 4.

**TYPES OF OPERATION**

The AW109SP helicopter, in its basic configuration, is approved for Day and Night VFR and IFR operations in non-icing conditions.

Aerobatic manoeuvres are prohibited.

**MINIMUM FLIGHT CREW**

The minimum flight crew consists of one pilot who shall operate the helicopter from the right crew seat.

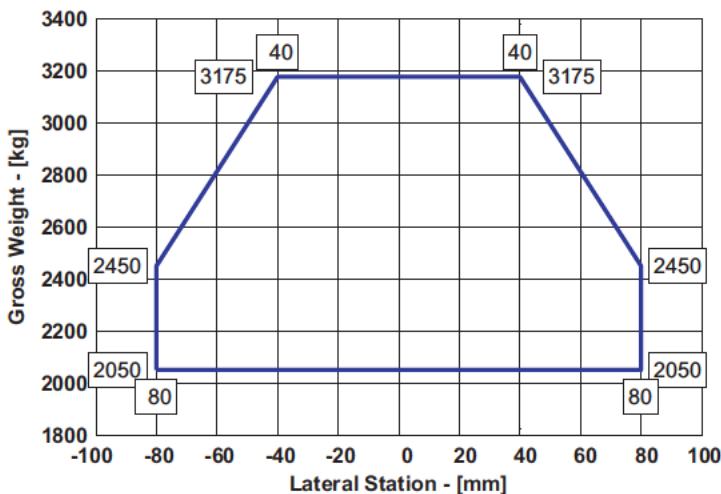
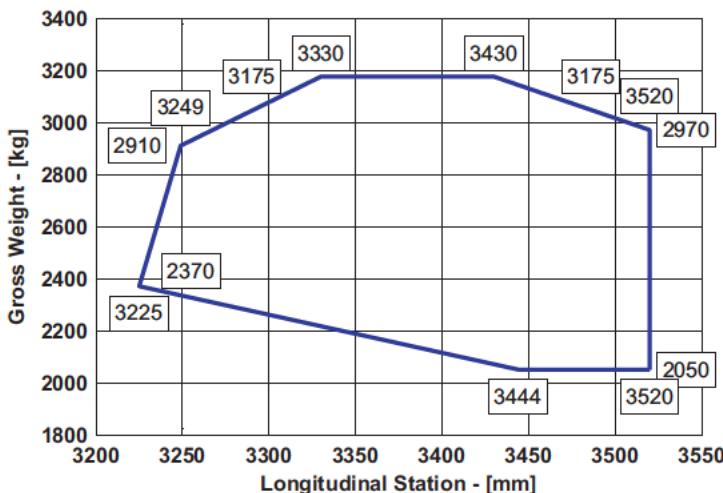
The left crew seat may be used for an additional pilot when the approved dual controls are installed.

**NUMBER OF OCCUPANTS**

Eight (pilot included).

**WEIGHT AND CENTER OF GRAVITY LIMITATIONS****WEIGHT**

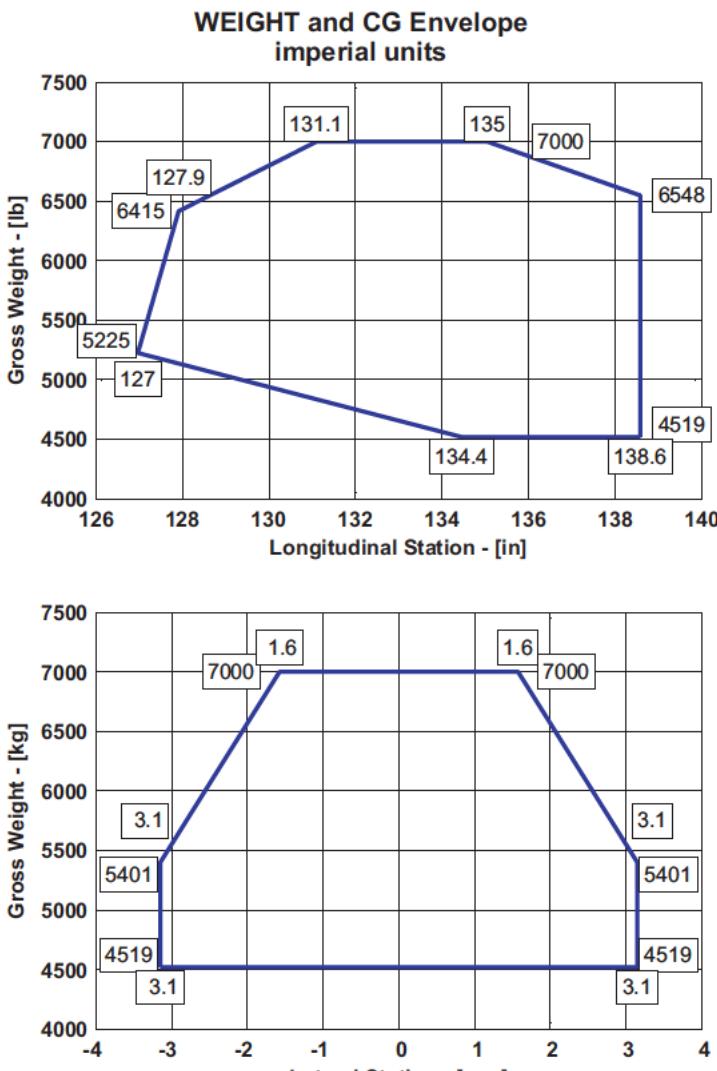
Maximum gross weight for ground taxing and towing ..... 3175 kg (7000 lb)



Maximum gross weight for take-off/landing ..... 3175 kg (7000 lb)

Minimum gross weight for flight ..... 2050 kg (4519 lb)

**CENTER OF GRAVITY**

Longitudinal limits ..... See Figure 1-1


Lateral limits ..... See Figure 1-1

GEN  
WT/CGWEIGHT and CG Envelope  
metric units

109G1560A009 Rev.A

ICN-0B-C-151000-G-A0126-00032-A-01-1

Figure 1-1 (Sheet 1 of 2) Weight, Longitudinal and Lateral CG Envelope (metric)

GEN  
WT/CG

109G1560A009 Rev.A

ICN 0B A 151000 G A0126 00033 A 02 1

Figure 1-1 (Sheet 2 of 2) Weight, Longitudinal and Lateral CG Envelope (english)

GEN  
WT/CG

**This Page Is Intentionally Left Blank**

SPD ALT  
TEMP SLP

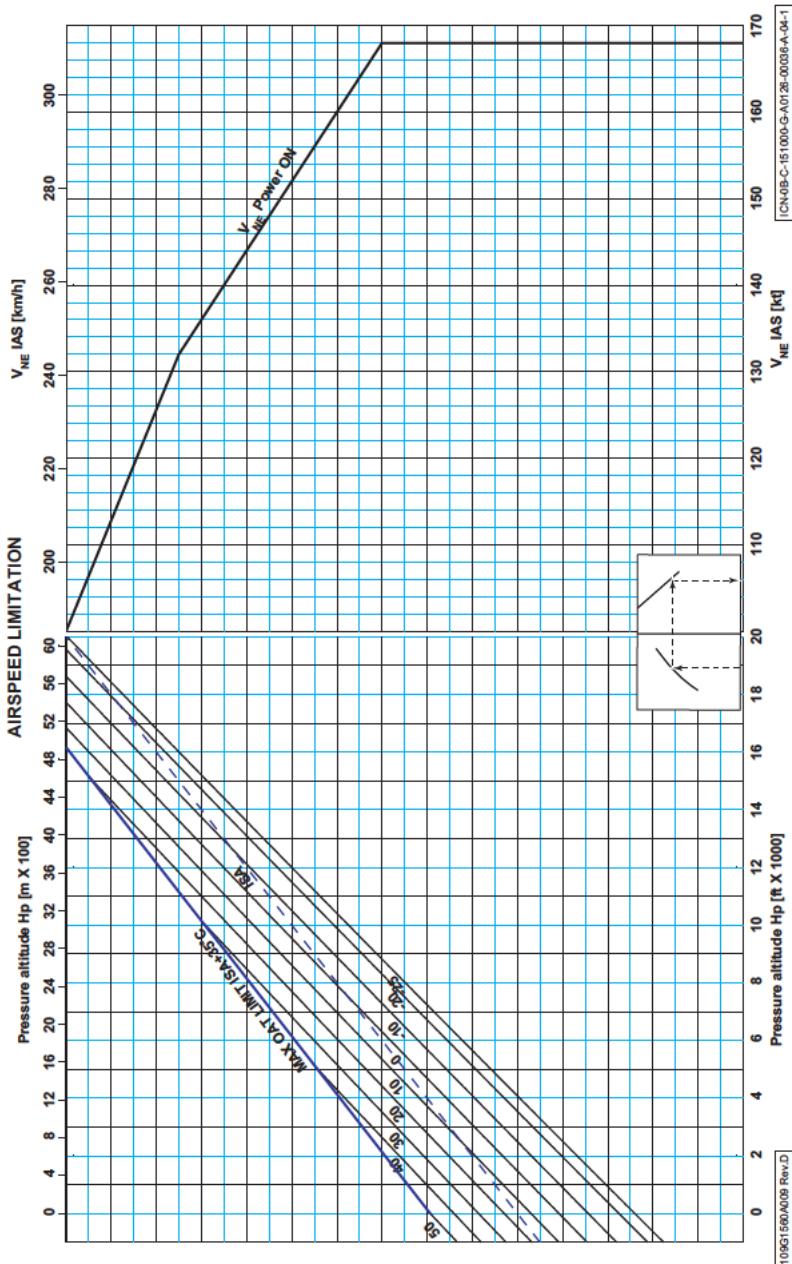
# AIRSPEED, ALTITUDE, TEMPERATURE, SLOPE LIMITATIONS

|                                                                   |           |
|-------------------------------------------------------------------|-----------|
| <b>AIRSPEED LIMITATIONS</b>                                       | <b>11</b> |
| <hr/>                                                             |           |
| <b>GROUND SPEED LIMITATIONS</b>                                   | <b>11</b> |
| <hr/>                                                             |           |
| <b>WIND SPEED LIMITATIONS FOR ROTOR<br/>STARTING AND STOPPING</b> | <b>13</b> |
| <hr/>                                                             |           |
| <b>ALTITUDE LIMITATIONS</b>                                       | <b>13</b> |
| <hr/>                                                             |           |
| <b>AMBIENT AIR TEMPERATURE<br/>LIMITATIONS</b>                    | <b>13</b> |
| <hr/>                                                             |           |
| <b>SLOPE LIMITATIONS</b>                                          | <b>13</b> |

**SPD ALT  
TEMP**

**This Page Is Intentionally Left Blank**

SPD ALT  
TEMP SLP**AIRSPEED LIMITATIONS**


|                                                                              |                               |
|------------------------------------------------------------------------------|-------------------------------|
| $V_{NE}$ (Power on) .....                                                    | Figure 1-2                    |
| $V_{NE}$ (OEI/Power-OFF) .....                                               | $V_{NE}$ (Power-ON) - 40 KIAS |
| $V_{NEI}$ (maximum IFR airspeed) .....                                       | $V_{NE}$ (Power-ON) - 20 KIAS |
| $V_{mini}$ (minimum IFR airspeed) .....                                      | 55 KIAS                       |
| Maximum airspeed during IFR/VFR approaches .....                             | 140 KIAS                      |
| Maximum landing gear operating airspeed ( $V_{LO}$ ) .....                   | 140 KIAS                      |
| Maximum landing gear extended airspeed ( $V_{LE}$ ) .....                    | 140 KIAS                      |
| Minimum airspeed in autorotation (without close external references) .....   | 60 KIAS                       |
| Maximum airspeed with single AP operational:                                 |                               |
| — normal flight .....                                                        | $V_{NE}$ (Power-ON) - 40 KIAS |
| — in IFR/VFR approaches .....                                                | 115 KIAS                      |
| — in moderate to high turbulence .....                                       | 115 KIAS                      |
| Maximum airspeed with AFCS OFF: .....                                        | $V_{NE}$ (Power-ON) - 40 KIAS |
| Maximum airspeed for searchlight extension, orientation and retraction ..... | 135 KIAS                      |

**GROUND SPEED LIMITATIONS****ON CONCRETE EVEN SURFACES**

|                                                      |          |
|------------------------------------------------------|----------|
| Maximum speed for running take-off and landing ..... | 40 knots |
| Maximum taxiing speed (nose wheel unlocked)          |          |
| • straight: .....                                    | 20 knots |
| • turning: .....                                     | 10 knots |

**ON UNPREPARED OR UNEVEN SURFACES**

|                                                      |          |
|------------------------------------------------------|----------|
| Maximum speed for running take-off and landing ..... | 20 knots |
| Maximum taxiing speed (nose wheel unlocked)          |          |
| • straight: .....                                    | 20 knots |
| • turning: .....                                     | 10 knots |

SPD ALT  
TEMPFigure 1-2 Airspeed Limitations -  $V_{NE}$  (Power-ON)

## WIND SPEED LIMITATIONS FOR ROTOR STARTING AND STOPPING

The maximum wind speed for rotor starting and stopping is 40 knots from any direction.

## ALTITUDE LIMITATIONS

Maximum altitude for take-off and landing: ..... Figure 1-3

Minimum and maximum operating altitudes: ..... Figure 1-3

### Note

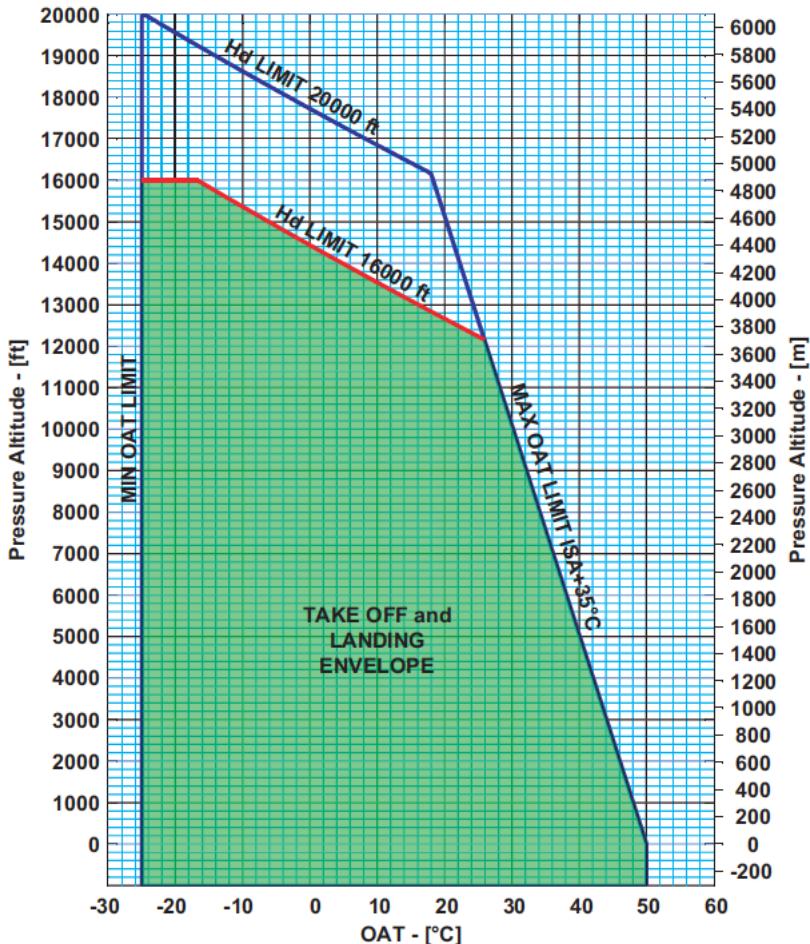
For low speed controllability, IGE and OGE hover performance and H-V refer to Section "PERFORMANCE".

## AMBIENT AIR TEMPERATURE LIMITATIONS

Minimum ambient air temperature ..... -25°C (-13°F)

Maximum sea level ambient air temperature ..... +50°C (122°F)

The maximum ambient air temperature for operation decreases with pressure altitude at the standard lapse rate of 2 °C (3.6 °F) every 1000 ft (305 m) up to 20000 ft (6096 m).


For the Temperature Envelope Extension from -25 °C (-13 °F) to -40 °C (-40 °F), refer to Supplement 15 in the AW109SP RFM OES.

## SLOPE LIMITATIONS

Slope operations are prohibited on surfaces with a slope angle steeper than the following:

From 90° to the left of nose up to 90° to the right of nose up ... 10 deg

Nose down ..... 2 deg

SPD ALT  
TEMPFLIGHT and T.O/LANDING  
ENVELOPE

109G1560A009 Rev.A

ICN 0B A 151000 G A0126 00037 A 04 1

Figure 1-3 Pressure altitude / OAT Envelope

# **ENGINE, ROTOR, TRANSMISSION LIMITATIONS**

ENG RTR  
XMSN

|                                 |           |
|---------------------------------|-----------|
| <b>ENGINE LIMITATIONS</b>       | <b>17</b> |
| <hr/>                           |           |
| <b>ROTOR LIMITATIONS</b>        | <b>19</b> |
| <hr/>                           |           |
| <b>TRANSMISSION LIMITATIONS</b> | <b>19</b> |

**ENG RTR**  
**XMSN**

**This Page Is Intentionally Left Blank**

## ENGINE LIMITATIONS

### Note

The one engine inoperative (OEI) ratings are intended for emergency use only, when one engine becomes inoperative due to an actual malfunction. OEI operations for maintenance or training purposes shall be limited to the OEI Continuous Operation power range.

### Note

Transient range must not be used intentionally.

ENG RTR  
XMSN

## ENGINE STARTER DUTY CYCLE

45 seconds on, 1 minute off

45 seconds on, 1 minute off

45 seconds on, 30 minutes off

## GAS GENERATOR SPEED (N1)

### All Engines Operating (AEO)

Continuous Operation ..... 50 to 97.1%

Take-Off Range (5 minutes) ..... 97.2 to 99.7%

Maximum ..... 99.7%

Transient (20 seconds) ..... 104.1%

### One Engine Inoperative (OEI)

Continuous Operation ..... 50 to 99.7%

2.5 minutes Range ..... 99.8 to 102.9%

Maximum ..... 102.9%

Transient (20 seconds) ..... 104.1%

## POWER TURBINE SPEED (N2)

### All Engines Operating (AEO)

Transient ..... 95%

Minimum ..... 99%

Continuous Operation (except for Take-Off and Landing) 99 to 101%

Take-Off, Landing and below Vy ..... 101 to 102%

Maximum ..... 102%

Transient (20 seconds) ..... 112%

### One Engine Inoperative (OEI)

Transient ..... 85%

Minimum ..... 90%

Cautionary Range ..... 90 to 98%

|                                                        |             |
|--------------------------------------------------------|-------------|
| Continuous Operation (except for Take-Off and Landing) | .99 to 101% |
| Take-Off, Landing and below $V_y$                      | 101 to 102% |
| Maximum                                                | 102%        |
| Transient (20 seconds)                                 | 112%        |

**TURBINE OUTLET TEMPERATURE (TOT)****Engine Starting**

|                               |        |
|-------------------------------|--------|
| Maximum (unlimited)           | 650 °C |
| Maximum transient (2 seconds) | 875 °C |

**Note**

A linear variation applies between 20 seconds at 650 °C and 2 seconds at 760 °C.

A transient of 2 seconds applies above 760 °C.

**All Engines Operating (AEO)**

|                            |               |
|----------------------------|---------------|
| Maximum Continuous         | 840 °C        |
| Take-Off Range (5 minutes) | 841 to 900 °C |
| Transient (20 seconds)     | 1000 °C       |

**One Engine Inoperative (OEI)**

|                        |               |
|------------------------|---------------|
| Maximum Continuous     | 900 °C        |
| 2.5 minutes Range      | 901 to 970 °C |
| Transient (20 seconds) | 1000 °C       |

**ENGINE OIL PRESSURE****Note**

The oil pressure limits vary as a function of the gas generator speed.

|                                |                                                |
|--------------------------------|------------------------------------------------|
| Minimum for ground idle        | Above lower red line                           |
| Continuous Operation           | Green band<br>(variable as a function of N1)   |
| Cautionary Range               | Yellow bands<br>(variable as a function of N1) |
| Maximum during engine starting | 200 psi                                        |

**Note**

The engine can operate with oil pressure up to 200 psi during or after start or if the oil temperature drops significantly below 71 °C. Oil pressure will decrease as oil temperature increases and is not expected to endure for more than 5 sec. The operation at an oil pressure up to 200 psi is permitted for a period of 10 minutes.

**ENGINE OIL TEMPERATURE**

|                            |              |
|----------------------------|--------------|
| Continuous Operation ..... | 10 to 125 °C |
| Maximum .....              | 125 °C       |

**ROTOR LIMITATIONS**ENG RTR  
XMSN**POWER-ON (AEO)**

|                                                              |             |
|--------------------------------------------------------------|-------------|
| Transient .....                                              | 95%         |
| Minimum .....                                                | 99%         |
| Continuous Operation (except for Take-Off and Landing) ..... | 99 to 101%  |
| Take-Off, Landing and below Vy .....                         | 101 to 102% |
| Maximum .....                                                | 102%        |

**POWER-ON (OEI)**

|                                                              |             |
|--------------------------------------------------------------|-------------|
| Transient .....                                              | 85%         |
| Minimum .....                                                | 90%         |
| Cautionary Range .....                                       | 90 to 98%   |
| Continuous Operation (except for Take-Off and Landing) ..... | 99 to 101%  |
| Take-Off, Landing and below Vy .....                         | 101 to 102% |
| Maximum .....                                                | 102%        |

**POWER-OFF**

|                            |            |
|----------------------------|------------|
| Transient .....            | 90%        |
| Minimum .....              | 95%        |
| Continuous Operation ..... | 95 to 110% |
| Maximum .....              | 110%       |

**TRANSMISSION LIMITATIONS****TORQUE (TRQ%) (AEO)**

|                                  |             |
|----------------------------------|-------------|
| Maximum Continuous .....         | 100%        |
| Take-Off Range (5 minutes) ..... | 101 to 107% |
| Maximum .....                    | 107%        |
| Transient (6 seconds) .....      | 110%        |

**TORQUE (TRQ%) (OEI)**

|                             |             |
|-----------------------------|-------------|
| Maximum Continuous .....    | 133%        |
| 2.5 minutes Range .....     | 134 to 162% |
| Maximum .....               | 162%        |
| Transient (6 seconds) ..... | 173%        |

ENG RTR  
XMSN**TRANSMISSION OIL PRESSURE**

|                           |              |
|---------------------------|--------------|
| Minimum .....             | 30 psi       |
| Continuous Operation..... | 30 to 50 psi |
| Cautionary Range.....     | 51 to 70 psi |
| Maximum .....             | 70 psi       |

**Note**

During cold starting conditions, the transmission oil pressure may temporarily rise up to 100 psi.

**TRANSMISSION OIL TEMPERATURE**

|                           |             |
|---------------------------|-------------|
| Continuous Operation..... | 0 to 120 °C |
| Maximum .....             | 120 °C      |

# **FUEL, LUBRICANTS, HYDRAULICS LIMITATIONS**

**FUEL  
LUB HYD**

|                               |           |
|-------------------------------|-----------|
| <b>FUEL LIMITATIONS</b>       | <b>23</b> |
| <hr/>                         |           |
| <b>LUBRICANTS LIMITATIONS</b> | <b>25</b> |
| <hr/>                         |           |
| <b>HYDRAULICS LIMITATIONS</b> | <b>26</b> |

FUEL  
LUB HYD

**This Page Is Intentionally Left Blank**

**FUEL LIMITATIONS****FUEL PRESSURE**

Cautionary Range ..... 0 to 7 psi  
Continuous Operation ..... 8 to 25 psi  
Maximum ..... 25 psi

**FUEL QUANTITY**

Total ..... 460 kg  
(575 liters at 0.8 kg/liter)

**FUEL  
LUB HYD****TOTAL UNUSABLE FUEL**

In coordinated flight ..... 10 kg  
(12 liters at 0.8 kg/liter)

**APPROVED FUELS**

| Type                  | Specification            |
|-----------------------|--------------------------|
| JET A                 | ASTM D1655               |
| JET A-1               | ASTM D1655               |
| JP-5 *                | MIL-T-5624               |
| JP-8 *                | MIL-T-83133              |
| No. 3 Jet fuel (RP-3) | GB 6537-2006             |
| R.T.                  | GOST 10227-86            |
| R.T.                  | GSTU 320.00149943.007-97 |
| TS-1**                | GOST 10227-86            |
| TS-1**                | GSTU 320.00149943.011-99 |

**Note**

An approved fuel or any mixture of acceptable fuels may be used. However, changing to a fuel with a substantially different heating value or specific gravity may require maintenance in the form of engine fuel control (trimmer) adjustment. Refer to the Pratt & Whitney PW207C engine manual.

**Note**

Fuel grades marked with an asterisk (\*) contain a fuel system icing inhibitor (FSII). For JP-8, MIL-T-83133C allows two grades. The grade meeting NATO code F-34 has FSII while the grade meeting code F-35 has no FSII unless specifically requested.

**Note**

Fuel grades marked with double asterisk (\*\*) are for occasional use only. Refer to Pratt & Whitney PW207C Maintenance Manual for full details and restrictions.

**Note**

For operations below +4°C, the use of anti-ice additive is authorized but not mandatory since the helicopter is equipped with an airframe anti-ice fuel filter. For additive requirements and blending procedures refer to the Pratt & Whitney PW207C engine manual.

**EMERGENCY FUELS****FUEL  
LUB HYD**

Emergency fuels should only be used whenever any of the authorized fuels are not available.

| Fuel Type                                          | Applicable Specification | Restrictions                                                                                                                        |
|----------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Automotive Diesel<br>CPW 46                        | Arctic Grade             | Do not use below -15 °C (5 °F) OAT                                                                                                  |
|                                                    | Winter Grade             | Do not use below -7 °C (20 °F) OAT                                                                                                  |
|                                                    | Regular Grade            | Do not use below 5 °C (40 °F) OAT                                                                                                   |
| Aviation Gasoline<br>Grades: 80, 100<br>and 100 LL | MIL-G-5572               | Do not use for longer than 150 hours during any period between engine overhauls.<br>Engine operation in suction mode is prohibited. |

## LUBRICANTS LIMITATIONS

### AUTHORIZED ENGINE OILS

| Applicable Specification | Brand Names<br>(For reference only)                                                                                                                                                                                                                                        |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MIL-PRF-23699            | Aero-Shell Turbine Oil 500<br>Aero-Shell Turbine Oil 560<br>BP Turbo Oil 2380 (formerly Exxon Turbo Oil 2380)<br>BP Turbo Oil 25 (formerly Exxon Turbo Oil 25)<br>Castrol 5000<br>Mobil Jet Oil II<br>Royco Turbine Oil 500<br>Royco Turbine Oil 560<br>Turbonycoil 525-2A |

FUEL  
LUB HYD

**Note**

Engine oil tank capacity is 5.12 liters (1.35 US Gallon).

**Note**

Mixing of the different brands and types is prohibited.

### AUTHORIZED TRANSMISSION OILS

| Designation                                          | Specification |
|------------------------------------------------------|---------------|
| BP Turbo oil 2380<br>(formerly EXXON Turbo oil 2380) | MIL-PRF-23699 |
| Mobil Jet Oil II                                     | MIL-PRF-23699 |
| Mobil Jet Oil 254                                    | MIL-PRF-23699 |
| Aeroshell Turbine oil 500                            | MIL-PRF-23699 |
| Aeroshell Turbine oil 555                            | DOD-PRF-85734 |
| Aeroshell Turbine oil 560                            | MIL-PRF-23699 |
| Castrol Aero 5000                                    | MIL-PRF-23699 |
| BP Turbo oil 2197                                    | MIL-PRF-23699 |

Oils are limited to ambient temperatures above -40 °C (-40 °F).

**Note**

Mixing of oils of different brands and types is prohibited.

**HYDRAULICS LIMITATIONS****MAIN SYSTEM FLUID PRESSURE**

|                           |                  |
|---------------------------|------------------|
| Minimum .....             | 1200 psi         |
| Cautionary Range.....     | 1200 to 1400 psi |
| Continuous Operation..... | 1401 to 1600 psi |
| Maximum .....             | 1600 psi         |

**NORMAL UTILITY SYSTEM - FLUID PRESSURE**

|                           |                  |
|---------------------------|------------------|
| Minimum .....             | 500 psi          |
| Cautionary Range.....     | 500 to 1140 psi  |
| Continuous Operation..... | 1141 to 1600 psi |
| Maximum .....             | 1600 psi         |

**EMERGENCY UTILITY SYSTEM - FLUID PRESSURE**

|               |          |
|---------------|----------|
| Minimum ..... | 1140 psi |
| Maximum ..... | 1600 psi |

**APPROVED FLUIDS**

The following hydraulic fluids are approved:

MIL-PRF-5606  
MIL-PRF-83282.

**Note**

Mixing of fluids of different brands and types is prohibited.

# GENERATOR LOAD, AVIONIC, MISCELLANEOUS LIMITATIONS

GEN LD  
AVNC, MISC

|                                                            |           |
|------------------------------------------------------------|-----------|
| <b>GENERATOR LOAD LIMITATIONS (FOR<br/>EACH GENERATOR)</b> | <b>29</b> |
| <b>AVIONIC LIMITATIONS</b>                                 | <b>29</b> |
| <b>MISCELLANEOUS LIMITATIONS</b>                           | <b>37</b> |

GEN LD  
AVNC, MISC

**This Page Is Intentionally Left Blank**

## GENERATOR LOAD LIMITATIONS (FOR EACH GENERATOR)

Up to 15000 ft Hp:

Continuous Operation..... 0 to 200 A

Maximum load at MPOG (no time limitation) ..... 160 A

Maximum load at MPOG (10 minutes)..... 160 to 200 A

Above 15000 ft Hp:

Continuous Operation..... 0 to 130 A

Maximum load at MPOG (no time limitation) ..... 130 A

Transient at starting (45 seconds) ..... 300 A

GEN LD  
AVNC, MISC

## AVIONIC LIMITATIONS

### MAGNETIC COMPASS

When operating the SRCH LT, the magnetic compass is unreliable.

## FLIGHT MANAGEMENT SYSTEM

The FMS is limited to the following navigation specifications/approaches:

Table 2-1. FMS Approved Operations

| ICAO 9613<br>PBN manual<br>-<br>Navigation<br>Specification | FMS Flight Phase (RNP) |         |               |              |         |        |     |
|-------------------------------------------------------------|------------------------|---------|---------------|--------------|---------|--------|-----|
|                                                             | Enroute                | Arrival | APPROACH (**) |              |         |        | Dep |
|                                                             |                        |         | Initial       | Intermediate | Final   | Missed |     |
| RNAV 5                                                      | 5                      | 5       | -             | -            | -       | -      | -   |
| RNAV 2                                                      | 2                      | 2       | -             | -            | -       | -      | -   |
| RNAV 1                                                      | 1                      | 1       | 1             | 1            | -       | 1      | 1   |
| RNP 2                                                       | 2                      | -       | -             | -            | -       | -      | -   |
| RNP 1                                                       | 1                      | 1       | 1             | 1            | -       | 1      | 1   |
| NPA (*)                                                     | -                      | -       | 1             | 1            | Angular | 1      | -   |
| RNP APCH<br>LNAV and<br>LNAV/VNAV<br>minima                 | -                      | -       | 1             | 1            | Angular | 1      | -   |
| RNP APCH<br>LPV<br>minima                                   | -                      | -       | 1             | 1            | Angular | 1      | -   |
| RNP APCH<br>LP<br>minima                                    | -                      | -       | 1             | 1            | Angular | 1      | -   |
| RNP AR APCH<br>RNP 0.3<br>minima                            | -                      | -       | 0.3           | 0.3          | 0.3     | 1      | -   |
| RNP 0.3                                                     | 0.3                    | 0.3     | 0.3           | 0.3          | -       | 0.3    | 0.3 |

(\*) Non Precision Approach and Circling approach managed by FMS include VOR, VOR-DME, NDB minima.

(\*\*) For FMS approach operations refer to Supplement 34 of Basic RFM.

FMS operations can be carried out provided that the following systems are installed and operative:

**Table 2-2. FMS Configuration Limitations**

| Nav Spec.                        | Minimum Configuration Requirements<br>(specific P/N or later) |                                                |                  |
|----------------------------------|---------------------------------------------------------------|------------------------------------------------|------------------|
|                                  | EFIS sw version P/N                                           | GPS P/N                                        | AFCS P/N         |
| RNAV 5                           | All                                                           | All                                            | All              |
| RNAV 2                           | 25-EFIS80H-SW-0002                                            | 109G3450I01-101                                | 109-0774-04-0A06 |
| RNAV 1                           | 25-EFIS80H-SW-0002                                            | 109G3450I01-101                                | 109-0774-04-0A06 |
| RNP 2                            | 25-EFIS80H-SW-0002                                            | 109G3450I01-101                                | 109-0774-04-0A06 |
| RNP 1                            | 25-EFIS80H-SW-0002                                            | 109G3450I01-101                                | 109-0774-04-0A06 |
| NPA                              | 25-EFIS80H-SW-0002                                            | 109G3450I01-101                                | 109-0774-04-0A06 |
| RNP APCH<br>LNAV minima          | All                                                           | All                                            | All              |
| RNP APCH<br>LNAV/VNAV<br>minima  | 25-EFIS70F-SW-0001                                            | 42-015002-0001<br>MOD 1, or<br>109G3450I01-101 | 109-0774-04-0A05 |
| RNP APCH<br>LPV minima           | 25-EFIS70F-SW-0001                                            | 42-015002-0001<br>MOD 1, or<br>109G3450I01-101 | 109-0774-04-0A05 |
| RNP APCH<br>LP minima            | 25-EFIS80H-SW-0002                                            | 109G3450I01-101                                | 109-0774-04-0A06 |
| RNP AR APCH<br>RNP 0.3<br>minima | 25-EFIS80H-SW-0002                                            | 109G3450I01-101                                | 109-0774-04-0A06 |
| RNP 0.3                          | 25-EFIS80H-SW-0002                                            | 109G3450I01-101                                | 109-0774-04-0A06 |

GEN LD  
AVNC, MISCE

The pilot must verify the currency of the Navigation Data Base (NAV DB) on-board and the coherence of the FMS with the procedure to be flown.

The FMS is not Multi-Sensor Approved for navigation. Therefore in case dual GPS failure or outage occur the pilot must revert to Radio Navigation.

The aircraft must have approved radio navigation equipment installed and operating appropriate to the route of flight.

When out of SBAS coverage or in case of SBAS outage, Predictive RAIM request on Destination waypoint has to be checked on EFIS.

The RNP AR APCH with RNP minima less than RNP 0.3 or RNP AR Missed Approach less than RNP 1.0 are NOT allowed.

It is prohibited to navigate using the Flight Management System in Dead Reckoning mode.

**Note**

The Dead Reckoning mode will be automatically activated as the navigation mode only if the GPS systems have failed. The accuracy of the Dead Reckoning mode cannot be guaranteed.

**For EFIS with SW version 7.0F or previous****CAUTION**

Check FMS IFR procedures for continuity on MAP page or NAV LOG page after activating the procedure. In case of discontinuities the FMS could not correctly follow the published procedure. The pilot shall fly attentive and follow the published procedure.

**CAUTION**

To exit an FMS holding procedure press "CONT" softkey only when inbound holding waypoint.

***En route and terminal***

It is prohibited to use VNAV mode data for navigation.

***FMS approaches***

For FMS approach operations refer to Supplement 34 of Basic RFM.

**For EFIS with software version A109 7.0D**

It is prohibited to continue a Non Precision Approach procedures following a PFD failure.

***EFIS***

Skyway symbology does not provide precision approach guidance nor does it guarantee terrain separation.

It remains the pilot's responsibility to provide aircraft separation from terrain.

## HTAWS

The TAWS installed is a class B HTAWS and it provides the following functions:

- Terrain and Obstruction display;
- Forward Looking Terrain Awareness (FLTA);
- Sink Rate after Takeoff or Missed Approach (GPWS Mode 3).

HTAWS must not be used for navigation.

Do not attempt to navigate using the terrain depiction.

HTAWS must not be used for terrain following flight.

Do not use hue nor grid as cues for altitude or direction.

The HTAWS database installed shall be the last update for the region being flown.

GEN LD  
AVNC, MISCE

### CAUTION

The terrain and obstacle display is intended to serve as a terrain and obstacle awareness tool only. The display and database may not provide the accuracy and fidelity on which to base routine navigation decisions and plan routes to avoid terrain or obstacles.

### CAUTION

There are many towers, antennas, power lines, and obstructions that are not in the database.

## AUTOMATIC FLIGHT CONTROL SYSTEM

Minimum AFCS configuration for IFR flight.....2 AP in ATT mode

### *Dual AP operation*

Flight at altitude below 1000 ft AGL..... Fly attentive

Flight at airspeed above  $V_{NE}$  (Power-ON) - 20 KIAS..... Fly manually

### *Single AP operation*

Flight at altitude above 500 ft AGL..... Fly attentive

Flight at altitude at or below 500 ft AGL..... Fly manually

Flight in moderate to high turbulence ..... Fly manually

In single AP operation, the AFCS Upper Modes and Flight Director Modes must not be used unless conducting an approach, missed approach, transition to/from the hover or hover.

## FLIGHT DIRECTOR

UPPER AND FLIGHT DIRECTOR MODES ENGAGEMENT LIMITS AND  
MINIMUM USE HEIGHT (MUH)GEN LD  
AVNC, MISC

| Hold Mode   | Applicable Range                                                                                                 | MUH                                                                                                  | Notes |
|-------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------|
| <b>ALT</b>  | 0 KIAS to Vne<br>Altitude -1000 ft to 20000 ft                                                                   | 300ft AGL in cruise or<br>50 ft AGL in hover                                                         |       |
| <b>RHT</b>  | 0 KIAS to Vne<br>15 ft to 2500 ft AGL                                                                            | 200 ft AGL in cruise (over flat surfaces only) or<br>50 ft AGL in hover and transition to/from hover |       |
| <b>HDG</b>  | 0 KIAS to Vne                                                                                                    | 200 ft AGL in cruise or<br>50 ft AGL during approach in hover and transition to/from hover           |       |
| <b>ALTA</b> | 40 KIAS to Vne<br>Altitude -1000 ft to 20000 ft                                                                  | 300 ft AGL                                                                                           |       |
| <b>VS</b>   | 40 KIAS to Vne within -1500 fpm and 2000 fpm                                                                     | 200 ft AGL                                                                                           | 3     |
| <b>IAS</b>  | 40 KIAS to Vne                                                                                                   | 200 ft AGL in cruise or<br>50 ft AGL during approach in hover and transition to/from hover           |       |
| <b>HOV</b>  | Airspeed less than 80 KIAS and<br>Groundspeed<br>— Longitudinal<br>-20 to +60 kts<br>— Lateral<br>-20 to +20 kts | 200 ft AGL in cruise or<br>50 ft AGL during approach in hover and transition to/from hover           |       |
| <b>GA</b>   | 40 KIAS to Vne                                                                                                   | 50 ft AGL during approach                                                                            | 1     |
| <b>TU</b>   | Airspeed less than 40 KIAS<br>10 ft to 2500 ft AGL                                                               | 200 ft AGL in cruise or<br>50 ft AGL during approach in hover and transition to/from hover           | 2     |
| <b>NAV</b>  | 40 KIAS to Vne                                                                                                   | 200 ft AGL in cruise or<br>50 ft AGL during approach in hover and transition to/from hover           |       |
| <b>VOR</b>  | 40 KIAS to Vne                                                                                                   | 200 ft AGL in cruise or<br>50 ft AGL during approach in hover and transition to/from hover           |       |

## UPPER AND FLIGHT DIRECTOR MODES ENGAGEMENT LIMITS AND MINIMUM USE HEIGHT (MUH) (CONTINUED)

| Hold Mode | Applicable Range | MUH                                                                                     | Notes |
|-----------|------------------|-----------------------------------------------------------------------------------------|-------|
| VAPP      | 40 KIAS to Vne   | 200 ft AGL in cruise or 50 ft AGL during approach in hover and transition to/from hover |       |
| LOC/ NLOC | 40 KIAS to Vne   | 200 ft AGL in cruise or 50 ft AGL during approach in hover and transition to/from hover |       |
| GS/ NGS   | 40 KIAS to Vne   | 200 ft AGL in cruise or 50 ft AGL during approach in hover and transition to/from hover |       |

GEN LD  
AVNC, MISCE**Notes**

- 1 GA mode engagement is inhibited (regardless of airspeed value) if HOV mode engaged.
- 2 TU mode engages also for airspeed less than 40 kts if HOV mode engaged.
- 3 VS Mode engagement above 2000 fpm or below -1500 fpm will results in the mode returning the aircraft to the maximum rates quoted (2000 fpm or -1500 fpm).

**General Limitations**

With AFCS Upper Modes and Flight Director Modes engaged the torque limiter must be active (LIMITER ON advisory message displayed).

**ILS Approach**

The helicopter is certified to carry out CAT 1 ILS approaches (DH minima not less than 200 ft AGL).

Steepest ILS approach gradient ..... 7,5 deg

Maximum Airspeed according to the following table:

| GLIDE PATH ANGLE (deg) | AIRSPEED (KIAS) |
|------------------------|-----------------|
| 3                      | 140             |
| 4                      | 120             |
| 5                      | 110             |
| 6                      | 100             |
| 7,5                    | 90              |

**GPS approach**

The helicopter is certified to carry out GPS approaches DA(H) minima not less than 250 ft AGL).

Steepest GPS approach gradient ..... 9,0 deg

Maximun Airspeed according to the following table:

| GLIDE PATH ANGLE (deg) | AIRSPEED (KIAS) |
|------------------------|-----------------|
| 3                      | 140             |
| 4                      | 120             |
| 5                      | 110             |
| 6                      | 100             |
| 7,5                    | 90              |
| 8                      | 80              |
| 9                      | 70              |

**Upper modes**

HOV Mode:

HDG datum shall not be changed with variation greater than  $\pm 10^\circ$  when HOV mode is engaged with relative wind speed and/or non-zero ground-speed reference.

For EFIS with software version A109 7.0D

HOV mode is prohibited if the Magnetic Variation is in excess of 5° [5°W, 5°E].

RHT Mode:

The use of Radar Height (RHT) mode is prohibited in cruise over nonflat surfaces.

When in RHT mode the RadAlt must be continuously cross-checked with BarAlt set to QFE.

TU Mode:

Safe operation of TU mode has been demonstrated up to 25 kts wind speed coming from  $\pm 90$  deg with respect to rotorcraft heading.

For EFIS with software version A109 7.0D

TU mode is prohibited if the Magnetic Variation is in excess of 5° [5°W, 5°E].

**NLOC and NGS Modes**For EFIS with software version A109 7.0D

NLOC and NGS modes are prohibited, either coupled or uncoupled, if the Magnetic Variation is in excess of 2° [2°W, 2°E].

**LOC and GS Modes**

For EFIS with software version A109 7.0D

LOC and GS modes are prohibited, either coupled or uncoupled, if the Magnetic Variation is in excess of 2° [2°W, 2°E].

**MISCELLANEOUS LIMITATIONS****ROTOR BRAKE**

Selection of the rotor brake to the ON position is limited as follows:

Rotor Speed (NR) ..... below 40%

GEN LD  
AVNC, MIS**BAGGAGE COMPARTMENT**

Maximum load ..... 120 kg (264 lb)

Maximum unit load ..... 500 kg/m<sup>2</sup> (102 lbs/sq ft)

**FUEL MANAGEMENT SYSTEM**

It is prohibited to rely upon Fuel Flow data for flight planning and navigation.

**PASSENGERS CABIN LIMITATIONS**

Baggage storage under the seat is prohibited.

**DOORS OPENED OR REMOVED**

Flight with either one or both passengers cabin sliding doors open is prohibited if passenger door modification P/N 109-0814-35 is not installed.

It is possible to fly with pilot / copilot doors removed and/or passengers cabin sliding doors opened to lock position or removed in whichever combination.

V<sub>NE</sub> with any door removed or open to lock position ..... 75 KIAS

Maximum airspeed for passengers cabin sliding doors opening or closing ..... 50 KIAS

IFR operation is prohibited with any door opened or removed.

**SUN GLASSES**

Pilot(s) must not use polarized type sun glasses.

**GEN LD**  
**AVNC, MISC**

**This Page Is Intentionally Left Blank**

# GENERAL, FLIGHT PLANNING, PREFLIGHT CHECKS

|                         |           |
|-------------------------|-----------|
| <b>GENERAL</b>          | <b>41</b> |
| <hr/>                   |           |
| <b>FLIGHT PLANNING</b>  | <b>41</b> |
| <hr/>                   |           |
| <b>PREFLIGHT CHECKS</b> | <b>42</b> |

PRE  
FLIGHT

PRE  
FLIGHT

**This Page Is Intentionally Left Blank**

## GENERAL

This section contains instructions and procedures for operating the helicopter from the planning stage, through actual flight conditions, to securing the helicopter after landing.

Normal and standard conditions are assumed in these procedures.

The instructions and procedures contained herein are written for the purpose of standardization and are not applicable to all situations.

The minimum and maximum limits, and the normal and cautionary operating ranges for the helicopter and its subsystems are indicated by instrument markings and placards.

Each time an operating limitation is exceeded, a malfunction or an emergency occurs, an appropriate entry shall be made in the logbook (airframe, engine, etc.). The entry shall state which limit was exceeded, the duration of time, the extreme value attained, and any additional information essential in determining the maintenance action required. As an aid to this task, the IDS software includes logs of limit exceed data, fault data, and caution and warning signals which are stored in a Non-Volatile Memory for subsequent retrieval.

## PRE FLIGHT

### FLIGHT PLANNING

Each flight must be planned adequately to ensure safe operations and to provide the pilot with the data to be used during the flight.

Essential weight and balance, and performance information should be compiled as follows:

- Check type of mission to be performed and destination;
- Select appropriate performance charts to be used from Section 4 of Basic RFM;
- Review the appropriate Supplements of Basic RFM for the optional equipment(s) installed.

Ascertain proper weight and balance of the helicopter as follows:

- Consult Section 6 "Weight and Balance" of Basic RFM;
- Ascertain weight of fuel, oil, payload, etc;
- Compute take-off and anticipated landing gross weights;
- Check helicopter center of gravity (CG) locations;
- Check that the weight and CG limitations in Section 1 are not exceeded during the flight.

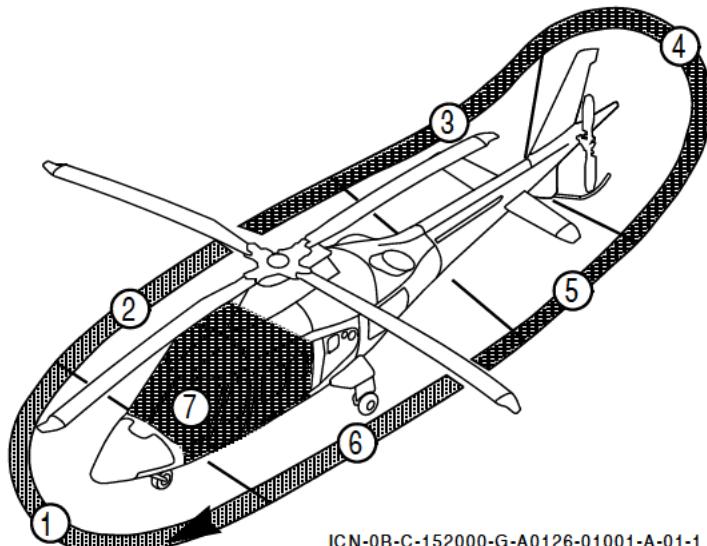
## PREFLIGHT CHECKS

## WARNING

If a failure is detected during pre-flight checks, maintenance action is necessary unless helicopter dispatch is permitted by a MMEL

Preflight checks are to be performed by the pilot in order to confirm that the helicopter is flightworthy and adequately equipped.

The checks are categorised as follows:


- First flight of the day
- Every flight

PRE  
FLIGHT

Checks marked with an arrow → are required before the first flight of the day. All other checks are to be carried out before every flight.

Checks in blue may be omitted if the AIRWORTHINESS CHECK has been performed as per MAINTENANCE MANUAL.

The inspection commences at the nose and continues clockwise around the helicopter (Figure 2-1). During the inspection, confirm that there are no leaks from drains, that all vents, air intakes and air outlets are free of obstruction, and all access panels and antennas are secure.



ICN-0B-C-152000-G-A0126-01001-A-01-1

Figure 2-1 Preflight check sequence

AREA N°1 : Helicopter nose

AREA N°5 : Tail boom - LH side

AREA N°2 : Fuselage - RH side

AREA N°6 : Fuselage - LH side

AREA N°3 : Tail boom - RH side

AREA N°7 : Cabin interior

AREA N°4 : Fins, tail gearbox, tail rotor and skid

1. Main and tail rotor tie-downs : Removed.

#### Area N°1 (Helicopter Nose)

1. Nose exterior : Condition.
2. Ventilation air intake : Free of obstruction.
3. Pitot-static tubes : Cover removed, condition and free of obstruction.
4. Nose landing gear : Condition, shock strut extension, leaks, tyre condition and pressure.
5. Searchlight : Condition and cleanliness.
6. → Nose compartment access door : Open.
7. → Avionics components : Condition and secured.
8. → Accumulators : Condition and free of leaks.  
(Only one accumulator is present in FIXED WHEELED LANDING GEAR configuration).
9. Nose compartment access door : Secure.
10. → Accumulators : Discharge by pressing two relevant red pushbuttons.  
(Only one accumulator is present in FIXED WHEELED LANDING GEAR configuration).

#### PRE FLIGHT

##### CAUTION

The discharge of accumulators causes loss of parking brakes. Suitable measures (wheel chocks) should be taken to ensure helicopter will not move.

11. → Drains and vents : Free of obstruction.

#### Area N°2 (Fuselage - RH side)

1. Windshield : Condition and cleanliness.
2. Roof, lateral and lower transparent panels : Condition and cleanliness.
3. → Windshield wiper : Condition.
4. → RH OAT sensor : Condition, free of obstruction.
5. Fuselage exterior : Condition.

PRE  
FLIGHT

6. Pilot door window : Condition, cleanliness, and secure.
7. ➡ Antenna(s) : Condition.
8. Emergency floats electrical connector (if installed) : Cap locked.  
Chain condition and secure.
9. Sliding door : Condition and cleanliness of windows.
10. ➡ Sliding door jettison windows : Security of windows and seal retainers, condition of emergency markings.
11. Cowlings and fairings : Condition and secure.
12. ➡ Fore and middle access doors : Open.
13. ➡ Servo hydraulic system valves and filter group : Check for leaks and status (Red button out: filter clogged).
14. ➡ Hydraulic system tanks : Check fluid level and filler caps for security.
15. Fore and middle access doors : Secure.
16. ENGINE OIL COOLER access door : Secure.
17. ➡ Service step : Open and use to reach upper part of helicopter.
18. ➡ Main rotor hub and blades : Condition and secure.
19. ➡ Main rotor dampers : Condition and secure.  
Check for correct charge indication.
20. ➡ Main rotor pitch change links : Condition and secure.
21. ➡ Swashplate and driving scissors : Condition and secure.
22. ➡ Upper anti-collision light : Condition and cleanliness.
23. ➡ HYD. SERVOS access door : Open.
24. ➡ Servo actuator (actuator with yellow decal) : Condition and leaks.
25. ➡ Main transmission and accessories (visible area) : Condition and leaks.
26. ➡ Transmission external oil filter : By-pass indication (Red button out: filter clogged).

27. HYD. SERVOS access door : Secure.

28. → ENGINE OIL COOLER access door : Open.

29. → Cooler blower air intake : Free of obstruction.

30. → Cooler system belt : Condition and secured.

31. ENGINE OIL COOLER access door : Secured.

32. → Airframe (A/F) fuel filter : Condition and leaks.

33. Service step : Secure.

34. Engine air intake screen and chamber : Covers removed; free of damage and obstruction.

35. → Engine access door : Open.

36. → Engine compartment drain filters : Free of obstructions.

37. → Engine area : Check for fuel and oil leaks.

38. → Engine oil : Check gauge for oil level.

39. → Engine oil filter impending bypass indicator : Check for correct indication.  
(Red pop-up indicator not in sight).

40. → Engine-transmission drive shaft : Condition.

41. → Engine supports (visible area) : Condition.

42. Engine access door : Condition, secure.

43. Fuel filler cap : Secure.

44. → Igniter access door : Open.

45. → Igniter box : Condition.

46. → Engine fire extinguisher bottle : Condition.

47. Engine Exhaust Support : Condition.

48. Igniter access door : Secured.

49. Engine fire extinguisher indicator disc : Confirm in the red position.

## PRE FLIGHT

## Note

If the engine fire extinguisher indicator disc is not in the red position, it means that the relevant bottle has already been discharged and needs to be replaced.

PRE  
FLIGHT

|                                                          |                                                                         |
|----------------------------------------------------------|-------------------------------------------------------------------------|
| 50. Tail rotor driveshaft support access door            | Secure.                                                                 |
| 51. Engine exhaust                                       | : Cover removed, condition and free of fuel.                            |
| 52. Main landing gear                                    | : Condition, shock strut extension, leaks, tyre condition and pressure. |
| 53. ➡ Wheel brake disc                                   | : Confirm freedom of movement.                                          |
| 54. ➡ L/G locking system pin                             | : Confirm freedom of movement.                                          |
| 55. Landing, taxi light and transparent panel            | : Condition and cleanliness.                                            |
| 56. ➡ Antenna(s)                                         | : Condition.                                                            |
| 57. ➡ Drain and vents lines                              | : Free of obstruction.                                                  |
| 58. External Power door                                  | : Secure.                                                               |
| 59. Emergency floats electrical connector (if installed) | : Cap locked.<br>Chain condition and secure.                            |

**Area N°3 (Tailboom - RH side)**

|                                                    |                              |
|----------------------------------------------------|------------------------------|
| 1. Tailboom exterior                               | : Condition.                 |
| 2. ➡ Antenna(s)                                    | : Condition.                 |
| 3. ➡ Lower anti-collision light                    | : Condition and cleanliness. |
| 4. Stabilizer                                      | : Condition and secure.      |
| 5. Position lights and flood lights (if installed) | : Condition and cleanliness. |

**Area N°4 (Fins, tail gearbox and skid)**

|                                     |                                                     |
|-------------------------------------|-----------------------------------------------------|
| 1. Tail fin and skid                | : Condition.                                        |
| 2. Tail navigation light            | : Condition and cleanliness.                        |
| 3. ➡ Tail rotor driveshaft door     | : Open.                                             |
| 4. ➡ Tail rotor driveshaft bearing  | : Condition and secured.<br>Check for grease leaks. |
| 5. ➡ Tail rotor driveshaft door     | : Secure.                                           |
| 6. ➡ Tail rotor gearbox access door | : Open.                                             |
| 7. ➡ Tail rotor gearbox             | : Confirm no leaks.                                 |

8. → Tail rotor pitch link control lever : Condition.
9. Tail rotor gearbox access door : Secure.
10. Oil filler cap : Secure.

#### Area N°5 (Tailboom and tail rotor - LH side)

1. Tail rotor gearbox oil level : Check oil level.
2. Tail rotor hub and blades : Condition, cleanliness and freedom of flapping.
3. Tail rotor pitch change mechanism : Condition and secure.
4. Tailboom exterior : Condition.
5. Stabilizer : Condition and secure.
6. Position lights and flood lights (if installed) : Condition and cleanliness.
7. → Antenna(s) : Condition.
8. → Tail rotor driveshaft cover : Open.
9. → Tail rotor driveshaft bearings : Condition and secured.  
Check for grease leaks.  
Check no marks of slippage.
10. Tail rotor driveshaft cover : Secure.
11. → Tail rotor shaft inspection pins : Confirm freedom of movement.

PRE  
FLIGHT

#### Area N°6 (Fuselage - LH side)

1. Baggage compartment door : Open.
2. Baggage compartment : Cargo (if on board) properly secured.
3. → Tail rotor hydraulic servo actuator : Check for oil leaks.

##### Note

The tail rotor hydraulic servo actuator is accessible in the baggage compartment through an inspection door.

4. → Circuit breakers (in baggage compartment) : All in.

PRE  
FLIGHT

**Note**  
The circuit breakers in the baggage compartment are accessible through an inspection door.

5. Baggage compartment door : Secure.
6. ➔ Drains and vents lines : Free of obstruction.
7. Emergency floats electrical connector (if installed) : Cap locked.  
Chain condition and secure.
8. Main landing gear : Condition, shock strut extension, leaks, tyre condition and pressure.
9. ➔ Wheel brake disc : Confirm freedom of movement.
10. ➔ L/G locking system pin : Confirm freedom of movement.
11. Landing, taxi light and transparent panel : Condition and cleanliness.
12. Engine exhaust : Cover removed, condition and free of fuel.
13. Engine fire extinguisher indicator disc : Confirm in the red position.

**Note**

If the engine fire extinguisher indicator disc is not in the red position, it means that the relevant bottle has already been discharged and needs to be replaced.

14. ➔ Tail rotor driveshaft support access door : Open.
15. ➔ Igniter access door : Open.
16. ➔ Igniter box : Condition.
17. ➔ Engine fire extinguisher bottle : Condition.
18. ➔ Tail rotor middle drive shaft bearings : Check condition.  
Check no marks of slippage.
19. Engine Exhaust Support : Condition.
20. Igniter access door : Secured.
21. Tail rotor driveshaft support access door : Secure.
22. Engine air intake screen and chamber : Cover removed; free of damage and obstruction.
23. ➔ Engine access door : Open.

24. → Engine compartment drain filters : Free of obstructions.

25. → Engine area : Check for fuel and oil leaks.

26. → Engine oil : Check gauge for oil level.

27. → Engine oil filter impending bypass indicator : Check for correct indication.

28. → Engine-transmission drive shaft : Condition.

29. → Engine support (visible area) : Condition.

30. Engine access door : Condition, secure.

31. → ENGINE OIL COOLER access door : Open.

32. → Cooler blower air intake : Free of obstruction.

33. → Cooler system belt : Condition and secured.

34. ENGINE OIL COOLER access door : Secure.

35. Service step : Open and use to reach upper part of helicopter.

36. → Main rotor hub and blades : Condition and secure.

37. → Main rotor dampers : Condition and secure.  
Check for correct charge indication.

38. → Main rotor pitch change links : Condition and secure.

39. → Swashplate and driving scissors : Condition and secure.

40. → Transmission oil access door : Open.

41. → Transmission oil filler cap : Secure.

**CAUTION**

The transmission oil level check is to be performed in any case before the first flight of the day and it can be considered valid for a maximum of 5 flights including the first.

**PRE FLIGHT**

**PRE  
FLIGHT**

| <b>Note</b>                                                                           |                                                                           |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Transmission oil level must be between the MIN and the MAX markings.                  |                                                                           |
| 42. ➡ Transmission oil                                                                | : Confirm correct level.                                                  |
| 43. ➡ Transmission oil access door                                                    | : Secure.                                                                 |
| 44. ➡ HYD. SERVOS access door                                                         | : Open.                                                                   |
| 45. ➡ Main transmission and accessories (visible area)                                | : Condition and leaks.                                                    |
| 46. ➡ Servo actuators (visible ones: actuator with red decal and one with blue decal) | : Condition and leaks.                                                    |
| 47. HYD. SERVOS access door                                                           | : Secure.                                                                 |
| 48. ➡ Airframe (A/F) fuel filter                                                      | : Condition and leaks.                                                    |
| 49. Service step                                                                      | : Secure.                                                                 |
| 50. Cowling and fairings                                                              | : Condition and secure.                                                   |
| 51. ➡ Sliding door jettison windows                                                   | : Security of windows and seal retainer, condition of emergency markings. |
| 52. Sliding door                                                                      | : Condition and cleanliness of windows.                                   |
| 53. Fuselage exterior                                                                 | : Condition.                                                              |
| 54. Fore and middle access door                                                       | : Open.                                                                   |
| 55. Flight control rods                                                               | : Confirm freedom of movement.                                            |
| 56. Fore and middle access door                                                       | : Secure.                                                                 |
| 57. Co-pilot door and window                                                          | : Condition, cleanliness, seal retainer and secure.                       |
| 58. ➡ LH OAT sensor                                                                   | : Condition, free of obstruction.                                         |
| 59. Windshield                                                                        | : Condition and cleanliness.                                              |
| 60. Roof, lateral and lower transparent panels                                        | : Condition and cleanliness.                                              |
| 61. ➡ Windshield wiper                                                                | : Condition.                                                              |
| 62. ➡ Antenna(s)                                                                      | : Condition.                                                              |
| 63. Emergency floats electrical connector (if installed)                              | : Cap locked.<br>Chain condition and secure.                              |

**Area N°7 (Helicopter interior)****Cabin interior**

1. ➡ Sliding door jettison windows (RH and LH) : Security and condition of seal retainer and red strap.
2. ➡ Sliding doors (RH and LH) : Confirm correct operation of locking and mechanical stop devices.
3. Passenger safety belts : Condition and belts fastened.

**Note**

Operation with passenger sliding doors open or removed requires removal or correct securing of all cabin equipment, installations and trim panels and that passenger safety belts are fastened if seats are unoccupied.

4. Cabin interior : Check security of equipment. Confirm presence of markings.
5. ➡ First aid kit : Check on board and content.
6. Sliding doors (RH and LH) : Closed and secure.

PRE FLIGHT

**Cockpit interior**

7. ➡ Co-pilot door jettison handle : Correct position and secure.
8. ➡ Co-pilot safety belt and inertia reel : Condition and belt fastened.
9. ➡ Co-pilot seat : Secure.
10. ➡ Co-pilot flight controls : Condition and secure.
11. ➡ LH lower and lateral transparent panels : Condition and cleanliness.
12. Co-pilot door : Closed and secure. Sliding windows closed.
13. ➡ Pilot door jettison handle : Correct position and secure.
14. ➡ Pilot safety belt and inertia reel : Condition.
15. ➡ Pilot seat : Secure.
16. ➡ Pilot flight controls : Condition and secure.
17. ➡ RH lower and lateral transparent panels : Condition and cleanliness.

18. → Cockpit fire extinguisher : Charged and secure.
19. → Passive vibration absorber (if installed) : Check cover secured.
20. → Instruments, panels and circuit breakers : Condition and legibility.
21. Circuit breakers : All in.  
(Main, pilot and co-pilot overhead).
22. → MSTR AVNX switch : As required.
23. → All other switches/controls : Confirm OFF / guarded / normal position when shutdown.

For the following checks connect the d.c. supply.

**Note**

The following checks may require a large electrical consumption. Beware of possible battery charge depletion if not using external power.

24. → BAT switch : ON.
25. → GEN BUS 1 and 2 switches : ON.
26. → External Power : Connect (if required).  
If external power connected, the battery is automatically disconnected. Confirm BATT OFF caution message is displayed.  
If battery requires charging select BAT switch to EPU.

**Note**

Confirm that external power source supplies not less than 28 V.

27. → Check following systems for correct operation:
  - Anticollision lights
  - Position lights
  - Taxi lights
  - Landing lights.

28. → LH airframe (A/F) fuel filter : Gently drain while respective fuel pump is operating. Push red button on filter and check for bypass indication and #1 A/F F FLTR caution message on EDU1.

**Note**

Fuel is pressurised, therefore drainage should be carried out by gently pushing red button. Failure to comply with this advice could result in some fuel being squirted around.

29. → LH fuel pump : Drain by raising guard and setting FUEL DRAIN switch located in baggage compartment to TNK 1 (upper position).  
Check for fuel dripping from the drain and verify FUEL DRAIN 1 caution message displayed on EDU 1.  
Set switch to OFF (centre position).  
Verify no fuel dripping and FUEL DRAIN 1 caution message suppressed.

30. → RH fuel pump : Drain by setting FUEL DRAIN switch to TNK 2 (lower position).  
Check for fuel dripping from the drain and verify FUEL DRAIN 2 caution message displayed on EDU 1.  
Set switch to OFF (centre position).  
Verify no fuel dripping and FUEL DRAIN 2 caution message suppressed.  
Lower guard.

31. → RH airframe (A/F) fuel filter : Gently drain while respective fuel pump is operating. Push red button on filter and check for bypass indication and #2 A/F F FLTR caution message on EDU1.

**Note**

Fuel is pressurised, therefore drainage should be carried out by gently pushing red button. Failure to comply with this advice could result in some fuel being squirted around.

32. ➔ External Power (if used) : Disconnect.
33. ➔ BAT switch : OFF.
34. ➔ GEN BUS 1 and 2 switches : Check automatically to OFF.
35. Pilot door : Closed and secure.

**PRE  
FLIGHT**

## **ENGINE PRE-START**

### **ENGINE PRE-START CHECKS**

**57**

**PRE-  
START**

PRE-  
START

**This Page Is Intentionally Left Blank**

## ENGINE PRE-START CHECKS

### Note

Instruction in blue are applicable only if kit  
P/N 109-B811-02 (fixed landing gear) is not installed

### INITIAL CHECKS

1. Pedals and seats : Adjust.
2. Seat belts : Fasten and adjust.
3. Doors (pilot and co-pilot) : Closed and locked.
4. Jettison handles : Correct position and secure.
5. Landing gear lever : Confirm DOWN.
6. Landing gear EMER/ NORMAL switch : Confirm in NORMAL position and wirelocked.
7. Parking brake : ON (pull out and turn).
8. Nose wheel lock : ON.
9. Cyclic stick : Centered, or positioned to counter wind, and friction adjusted.
10. Collective lever : Fully down and friction adjusted.
11. All switches/controls : Confirm OFF / guarded / normal position when shutdown.

PRE-  
START

### ELECTRICAL POWER-UP

1. MSTR AVNX switch : GN.
2. BAT switch : ON.
3. GEN BUS 1 and 2 switches : ON.
4. GEN 1 and 2 switches : ON.
5. INV 1 and 2 switches : ON.
6. Cockpit lights : As required.
7. External power : Connect (if required).  
If external power is connected, the battery is automatically disconnected. Confirm BATT OFF caution message is displayed.  
If battery requires charging select BAT switch to EPU.

PRE-  
START

**Note**  
Confirm that external power source supplies not less than 28 V.

8. MWL and MCL : Acknowledge and reset by:  
- Pressing on MWL and MCL or  
- Master Reset pushbutton on collective lever.

9. Pilot PFD and MFD displays : Confirm on.  
Verify System Status page:  
- SOFTWARE OK.  
- database validity and expiring dates  
- Check EFIS software version for applicable RFM limitations and normal and emergency procedures.  
Press any keys on pilot PFD and MFD to confirm.  
Adjust brightness as required.

**Note**  
Refer to EFIS Pilot's Guide for database updating procedure.

10. EDUs and ESIS displays : Confirm on.  
Adjust brightness as required.

EDU Tests:

**Note**  
The TEST function of both EDUs can be initiated by pressing the TEST key on either EDU.

**Note**  
During the test, the DAU will activate the MWL, MCL, the ENGINE FIRE voice warning message and audio tone; it will also illuminate the engine power lever grips and the FIRE warning lights on the engine control panel. If a failure is detected on engine fire and/or fuel low detectors, the caution message FIRE DET and/or F LOW FAIL will appear.

**Note**  
Due to the short length of the EDU Test, only one of the ENGINE FIRE voice messages is heard. The ENGINE FIRE message of the second engine can be heard by pushing the MASTER WARNING RESET pushbutton.

11. EDU 1 or EDU 2 : Select MENU, press TEST key and check the following test sequences on both EDUs.

11a. EDU 1 : The test sequence shall display the CRUISE page with the following data:  
N1 97.4%  
TOT 820 °C  
TRQ 100%  
N2 / NR 101%

11b. EDU 2 : The test sequence shall display the MAIN page with the following data:  
ENG OIL pressures 50 PSI  
ENG OIL temperatures 100 °C  
XMSN OIL pressure 40 PSI  
XMSN OIL temperature 100 °C  
FUEL pressure 20 PSI  
HYD oil pressure 1500 PSI  
FUEL quantity Decreasing  
OAT +25° C  
In the advisory area (lower part of the screen) the test sequence shall display:  
- EDU 1 and EDU 2 software identification number;  
- DAU-A and DAU-B software identification number.  
- applicable to EDU P/N 109-0900-76-2A05 and subs:  
- white label "SP RETRACT LG" if in retractable landing gear configuration  
or  
- white label "SP FIXED LG" if in fixed landing gear configuration.

PRE-  
START**Note**

If yellow label "SP FIXED LG" appears, IDS hardware configuration setting is incorrect.

The test sequence shall continue displaying, in the advisory area:

EDU 1 BIT PASS  
EDU 2 BIT PASS  
DAU-A BIT PASS  
DAU-B BIT PASS

11c. EDU 1 and EDU 2 : After 10 seconds the EDUs will automatically return to previous selected pages.

PRE-  
START**Note**

CHECK STRAP caution message displayed if the IDS hardware configuration setting is incorrect.

11d. EDU 1 : Select MENU and enter page 2. Confirm CH-A and CH-B legends are green and white respectively.

**AWG Tests:**

12. Aural Warning Generator Test : Select and hold AWG switch to TEST. Confirm the aural message "TEST OK" and after about 6 seconds the complete list of aural messages in the following sequence:  
 Tone 1 "ROTOR LOW"  
 Tone 2 "ENGINE ONE OUT"  
 Tone 2 "ENGINE TWO OUT"  
 Tone 3 "FIRE ENGINE ONE FIRE"  
 Tone 3 "FIRE ENGINE TWO FIRE"  
 Tone 4 "WARNING"  
 Tone 4 "ROTOR HIGH"  
 Tone 4 "AUTOPILOT"  
 Tone 4 "ENGINE IDLE"  
 Tone 5 "OVERTORQUE"  
 Tone 5 "AIRSPEED"  
 Tone 6 "LANDING GEAR"  
 Tone 6 "DECISION HEIGHT"  
 Tone 7 "TWO HUNDRED FEET"  
 Tone 7 "ALTITUDE"  
 Tone 8 Tone (for autopilot).

**Engine Trim Function:**

13. ENG GOV 1 and 2 switches: AUTO.

**CAUTION**

The engine power levers may be operated manually only in case of failure of the remote control (PLA MOTOR caution message active), or before starting, to position the levers to FLIGHT.

14. ENG TRIM 1 and 2 toggles: Confirm correct operation, then (on pilot's collective) leave the engine power levers in the FLIGHT position.

15. EDU 1 : Confirm #1 PLA and #2 PLA caution messages suppressed.

Miscellaneous:

16. Fire Extinguisher Bottle switch : Centered.
17. Fire Extinguisher Pushbutton covers : Condition.
18. STATIC source switch : NORM and guarded.
19. ELT switch (if installed) : Confirm in ARM position.
20. Pilot's ICS : BK-UP then to EMER and check functionality. Reset to NORM.
21. SERVO (Main hydraulics) : NORM.
22. Cabin ventilation knob : As required.
23. Landing gear indications : Confirm 3 green lights illuminated (Nose, RH, LH) and red light extinguished.
24. LAMP switch : Select and hold LAMP switch to TEST.
- 24a. Landing gear indication : Confirm red light illuminated.
- 24b. APMS panel : Confirm all pushbutton lights illuminated.
25. LAMP switch : Release.
- 25a. Landing gear indication : Confirm red light extinguished.
- 25b. APMS panel : Confirm all pushbutton lights extinguished.
26. OEI TNG switch : Confirm in off position (centered).
27. Altimeter : Set.
28. Fuel quantity : Check.
29. LD-SH (Load share) switch: As required.
30. NR switch : 100%.
31. Rotor brake : Engage and confirm ROTOR BRK caution message displayed. Disengage and confirm caution message suppressed.

PRE-  
START

PRE-  
START

**This Page Is Intentionally Left Blank**

## **ENGINE START**

|                            |           |
|----------------------------|-----------|
| <b>ENGINE START</b>        | <b>65</b> |
| <hr/>                      |           |
| <b>NORMAL ENGINE START</b> | <b>65</b> |
| <hr/>                      |           |
| <b>QUICK ENGINE START</b>  | <b>68</b> |

**START**

START

**This Page Is Intentionally Left Blank**

## ENGINE START

### Note

Instruction in **blue** are applicable only if kit P/N 109-B811-02 (fixed landing gear) is not installed.

1. EDU 1 : Confirm START page selected.

If a quick engine start is to be performed refer to **QUICK ENGINE START** procedure.

## NORMAL ENGINE START

Either engine may be started first. In the following procedure Engine 1 is started first.

### ENGINE 1 START:

1. GEN 1 and 2 switches : Check ON.
2. FUEL VALVE 1 switch : OPEN (bar vertical).
3. FUEL PUMP 1 switch : ON.  
Confirm FUEL PUMP 1 caution message suppressed.  
Check fuel pressure.

### CAUTION

Monitor engine start and if any of the following occurs:

- light-up is not obtained within 15 seconds
- abnormal noises are heard
- TOT increases beyond start limits (#1(2) HOT START caution message displayed)
- rotor has not begun to rotate when N1 is 40%
- N1 or N2 increases beyond limits
- engine hangs (stagnation in N1 below 54%)

Abort the engine start and shutdown the engine by performing the **ABORTED ENGINE START PROCEDURE**.

4. ENG 1 MODE switch : IDLE.
5. N1 : Note increasing and START legend vertically displayed.
6. TOT : Note increasing and IGN legend vertically displayed.
7. Rotors : Begin turning before N1 reaches 40%.

START

**CAUTION**

The operation at an engine oil pressure up to 200 psi is permitted for a maximum period of 10 minutes.

8. Engine oil pressure : When N1 is greater than 40 %  
Check rising.

**CAUTION**

Do not apply power or allow N1 to rise above 90% until engine oil temperature reaches 10 °C.

9. Engine oil temperature : Check.

**CAUTION**

Remain at IDLE until the transmission oil pressure returns below 70 psi whilst the oil temperature increases.

10. Transmission oil pressure : Check rising.

11. Engine starter : At N1 = 50%, engine starter is automatically deactivated.  
#1 DC GEN caution message suppressed.  
START and IGN legends are also automatically suppressed.

12. Main hydraulic system : Confirm rise in main hydraulic pressure, when the main rotor begins to rotate.

13. Hydraulic utility system (normal and emergency) : When accumulators are initially discharged, note the activation of MAIN UTIL CHRG and EMER UTIL CHRG caution messages as main rotor begins to rotate.  
Note both caution messages are suppressed when systems are charged.

**CAUTION**

Below 85% NR, avoid any cyclic movement except to prevent hitting blade stops.

14. N2 : Confirm stabilized to IDLE speed of 65%  $\pm$  1%.

15. Engine and transmission oil : Confirm pressure and temperature within limits.

START

16. ENG 1 MODE switch : FLT.
17. N2 / NR : Confirm stabilized at 100%.

**ENGINE 2 START:****CAUTION**

Ensure that the second engine engages as the N2 increases to FLT. A non-engaged engine shows positive N2 value and near zero torque. If a non-engagement occurs, shutdown the non-engaged engine first. When the non-engaged engine has stopped, shutdown the engaged engine. If a sudden or hard engagement occurs, shutdown both engines for maintenance action.

Repeat above procedure for engine N°2.

18. Engine parameters : Confirm within limits.
19. Transmission parameters : Confirm within limits.
20. BAT switch : Confirm ON.  
(BATT OFF caution message displayed if external power is connected).
21. External power (if used) : Disconnect and close door.  
Confirm EXT PWR ON and BATT OFF caution messages suppressed.
22. N2 / NR : Confirm stabilized at 100%.
23. MSTR AVNX : NORM.
24. Co-pilot PFD and MFD displays : Confirm on.  
Verify System Status page:
  - SOFTWARE OK.
  - database validity and expiring dates
  - Check EFIS software version for applicable limitations.Press any keys on pilot PFD and MFD to confirm.  
Adjust brightness as required.

**START****Note**

Refer to EFIS Pilot's Guide for database updating procedure.

**QUICK ENGINE START****Note**

It is recommended to start the engine to IDLE using the NORMAL ENGINE START procedure. Nevertheless, when OAT is warmer than 0 °C or during a warm engine start, it is possible to start to FLIGHT using the QUICK ENGINE START procedure.

This procedure can be followed whenever the situation requires to speed up the take-off.

It is possible to start a single engine or both engines in succession.

1. GEN 1 and 2 switches : Check ON.
2. FUEL VALVE 1 switch : OPEN (bar vertical).
3. FUEL PUMP 1 switch : ON.  
Confirm FUEL PUMP 1 caution message suppressed.  
Check fuel pressure.
4. FUEL VALVE 2 switch : OPEN (bar vertical).
5. FUEL PUMP 2 switch : ON.

**CAUTION**

Monitor engine start and if any of the following occurs:

- light-up is not obtained within 15 seconds
- abnormal noises are heard
- TOT increases beyond start limits (#1(2) HOT START caution message displayed)
- rotor has not begun to rotate when N1 is 40%
- N1 or N2 increases beyond limits
- engine hangs (stagnation in N1 below 54%)

Abort the engine start and shutdown the engine by performing the **ABORTED ENGINE START PROCEDURE**.

6. ENG 1 MODE switch : FLT.
7. ENG 2 MODE switch : FLT, when GEN 1 load is 200 A or less
8. N1 : Note increasing and START legend vertically displayed.
9. TOT : Note increasing and IGN legend vertically displayed.

10. Rotors : Begin turning before N1 reaches 40%.

**CAUTION**

Operating with an engine oil pressure of up to 200 psi is permitted for a maximum period of 10 minutes.

11. Engine oil pressures : When N1 is greater than 40 %  
Check rising.

**CAUTION**

Do not apply power or allow N1 to rise above 90% until engine oil temperature reaches 10 °C.

12. Engine oil temperatures : Check.

**CAUTION**

Remain at IDLE until the transmission oil pressure decreases below 70 psi whilst the oil temperature increases.

START

13. Transmission oil pressure : Check rising.

14. Engine starters : At N1 = 50%, engine starters are automatically deactivated.  
#1 DC GEN and #2 DC GEN caution messages suppressed.  
START and IGN legends are also automatically suppressed.

15. Main hydraulic system : Confirm rise in main hydraulic pressure when the main rotor begins to rotate.

16. Hydraulic utility system (normal and emergency) : When accumulators are initially discharged, note the activation of MAIN UTIL CHRG and EMER UTIL CHRG caution messages as main rotor begins to rotate.  
Note both caution messages are suppressed when systems are charged.

**CAUTION**

Below 85% NR, avoid any cyclic movement except to prevent hitting blade stops.

17. Engine and transmission oil : Confirm pressure and temperature within limits.
18. Engine parameters : Confirm within limits.
19. BAT switch : Confirm ON.  
(BATT OFF caution message displayed if external power is connected).
20. External power (if used) : Disconnect and close door.  
Confirm EXT PWR ON and BATT OFF caution messages suppressed.
21. N2 / NR : Confirm stabilized at 100%.
22. MSTR AVNX : NORM.

**START**

## **ABORTED ENGINE START**

**ABORTED ENGINE START**

**73**

**ABORT**

ABORT

**This Page Is Intentionally Left Blank**

**ABORTED ENGINE START****CAUTION**

Failure to follow the abort procedures may cause damage to the engine.

The affected engine should be shutdown by:

1. ENG MODE switch : OFF.

If engine does not begin to shutdown:

2. Engine power lever : OFF.

3. FUEL PUMP switch : OFF.

4. FUEL VALVE switch : CLOSED (bar horizontal).

Perform the following procedure before attempting to restart the engine:

- Allow 30 seconds fuel drain period

- Perform a 30 seconds **DRY MOTORING RUN**.

Refer to **DRY MOTORING RUN** procedure.

**ABORT****Note**

Engine start after Dry Motoring Run performance, refer to Section "LIMITATIONS" for engine starter limitations.

ABORT

**This Page Is Intentionally Left Blank**

## **DRY MOTORING RUN**

**DRY MOTORING RUN**

**77**

**DRY  
MOT**

DRY  
MOT

**This Page Is Intentionally Left Blank**

**DRY MOTORING RUN**

The following procedure is used to clear the engine of internally trapped fuel and vapor from within the engine.

1. ENG GOV switch : AUTO.
2. ENG MODE switch : OFF.
3. Engine power lever : OFF.
4. FUEL PUMP switch : OFF.
5. FUEL VALVE switch : CLOSED (bar horizontal).
6. IGN circuit breaker  
(on overhead circuit breaker panel) : Pull out.
7. Starter pushbutton  
(on engine power lever) : Push and hold as necessary.
8. N1 : Note increasing.
9. TOT : Note decreasing.

After required Dry Motoring Run period:

10. Starter pushbutton : Release.
11. IGN circuit breaker  
(on overhead circuit breaker panel) : Reset.

DRY  
MOT

DRY  
MOT

**This Page Is Intentionally Left Blank**

## SYSTEMS CHECKS

|                               |           |
|-------------------------------|-----------|
| <b>HYDRAULIC SYSTEMS</b>      | <b>81</b> |
| <hr/>                         |           |
| <b>FUEL SYSTEM</b>            | <b>81</b> |
| <hr/>                         |           |
| <b>ELECTRICAL A.C. SYSTEM</b> | <b>83</b> |
| <hr/>                         |           |
| <b>RCP</b>                    | <b>83</b> |
| <hr/>                         |           |
| <b>AFCS</b>                   | <b>84</b> |
| <hr/>                         |           |
| <b>MISCELLANEOUS</b>          | <b>85</b> |

SYS  
CHECKS

**This Page Is Intentionally Left Blank**

SYS  
CHECKS

**SYSTEMS CHECKS****HYDRAULIC SYSTEMS**

1. SERVO switch  
(Main Hydraulic) : NORM, confirm.  
Make small cyclic (clockwise), collective and pedal movements. Pressure drops must be equal for both systems (N°1 and N°2) and should not exceed 70 psi.

Set SERVO switch to SOV 2 OFF. SERVO 2 caution message displayed. Check operation of system N°1 with same cyclic, collective and pedal movements. Pressure drop should not exceed 70 psi and there should be no force increase, discontinuity or cyclic/ collective coupling.

Repeat check setting the switch to SOV 1 OFF to check system N°2.

Confirm that pedals are unboosted.

Then set SERVO switch to NORM.

**FUEL SYSTEM**

1. XFEED VALVE switch : AUTO (bar vertical).

**Note**  
When FUEL PUMP 1 (2) is OFF and crossfeed valve is open, N°2 (1) FUEL quantity box shall appear in magenta.

2. FUEL PUMP 1 switch : OFF.  
FUEL PUMP 1 caution message displayed.  
Crossfeed valve automatically open (bar horizontal) and XFEED advisory message displayed.  
Note N°1 fuel pressure gauge indicating normal operating pressure.

3. FUEL PUMP 1 switch : ON.  
FUEL PUMP 1 caution message suppressed.  
XFEED advisory message suppressed (bar vertical).

SYS  
CHECKS

4. FUEL PUMP 2 switch : OFF.  
FUEL PUMP 2 caution message displayed.  
Crossfeed valve automatically open (bar horizontal) and XFEED advisory message displayed.  
Note N°2 fuel pressure gauge indicating normal operating pressure.
5. FUEL PUMP 1 switch : OFF.  
Note fall in fuel pressure, activation of FUEL PUMP 1 caution message, crossfeed valve still open (bar horizontal) and XFEED advisory message still present.  
Confirm correct operation of engine-driven fuel pumps by checking that engine parameters are stable.
6. XFEED VALVE switch : CLOSED (bar vertical).  
XFEED advisory message suppressed.
7. XFEED VALVE switch : AUTO (bar horizontal).  
XFEED advisory message activated.
8. FUEL PUMP 1 and 2 switches : ON.  
FUEL PUMP 1 and 2 caution messages suppressed and crossfeed valve automatically closed (bar vertical) and XFEED advisory message suppressed.
9. XFEED VALVE switch : OPEN (bar horizontal).  
XFEED advisory message activated.  
AUTO (bar vertical).  
XFEED advisory message suppressed.

**ELECTRICAL A.C. SYSTEM**

1. INV 1 switch : OFF.  
Confirm INV 1 caution message displayed.  
Check for proper reading (115 V) on both AC systems on EDU 2 AUX page.
2. INV 1 switch : ON.  
Confirm INV 1 caution message suppressed.
3. INV 2 switch : OFF.  
Confirm INV 2 caution message displayed.  
Check for proper reading (115 V) on both AC systems on EDU 2 AUX page.
4. INV 2 switch : ON.  
Confirm INV 2 caution message suppressed.

**RCP**

1. AHRS knob : Turn AHRS knob to position 1.  
Confirm SAME AHRS yellow message appears on pilot and co-pilot PFD's and 2 AP AHRS FAIL CAS message displayed.  
Turn AHRS knob to position 2.  
Confirm SAME AHRS yellow message appears on pilot and co-pilot PFD's and 1 AP AHRS FAIL CAS message displayed.  
Turn AHRS knob to NORM position.  
Confirm SAME AHRS yellow messages extinguish and no CAS messages displayed.
2. ADU knob : Turn ADU knob to position 1.  
Confirm SAME ADC yellow message appears on pilot and co-pilot PFD's.  
Turn ADU knob to position 2.  
Confirm SAME ADC yellow message appears on pilot and co-pilot PFD's.  
Turn ADU knob to NORM position.  
Confirm SAME ADC yellow messages extinguish.

SYS  
CHECKS

3. GPS Knob : Turn GPS knob to position 1.  
 Confirm SAME GPS and SAME NAV yellow messages appears on pilot and co-pilot PFD's.

Turn GPS knob to position 2.  
 Confirm SAME GPS and SAME NAV yellow messages appears on pilot and co-pilot PFD's.

Turn GPS knob to NORM position.  
 Confirm SAME GPS and SAME NAV yellow messages extinguish.

### AFCS

1. APMS panel : Confirm all pushbutton lights are extinguished except AP1 and AP2 (OFF caption illuminated) and the PFD indicates the Pilot flying.

2. PFD : Check cyclic centered.

#### Note

During AFCS PFT do not touch flight controls.

3. APMS panel : Press TEST pushbutton and follow instructions displayed on IDS PFT page.  
 Confirm that 1(2) AP PFT COMPLETED message is displayed on IDS.

#### Note

If 1(2) AP TEST FAIL or 1(2) AP DEGRADED or 1(2) AP TEST DGR caution messages are displayed, repeat AFCS PFT once.

4. IDS : Confirm that 1(2) AP TEST FAIL or 1(2) AP DEGRADED or 1(2) AP TEST DGR caution messages are not displayed.

5. PFD display : Check consistency between PFD selection arrow on APMS panel and advisory arrow on PFD's.

6. P/R and C/Y TRIM pushbuttons : Check OFF lights extinguished.

7. AP1 and AP2 pushbuttons: Press to engage (OFF lights extinguish).

**MISCELLANEOUS**

1. PITOT 1 heat switch : ON.  
Check Current peak on generator load meter.  
Confirm PITOT 1 HEAT advisory message displayed.  
Confirm PITOT 1 FAIL Caution is not displayed.  
: Reset to OFF.  
Confirm PITOT 1 HEAT advisory message suppressed.

2. PITOT 2 heat switch : ON.  
Check Current peak on generator load meter.  
Confirm PITOT 2 HEAT advisory message displayed.  
Confirm PITOT 2 FAIL Caution is not displayed.  
: Reset to OFF.  
Confirm PITOT 2 HEAT advisory message suppressed.

3. Set communication and navigation frequencies on RTU and ICS control panels as required and check audio panel.

4. ADIs : On PFD's check correct alignment and no failure indications.  
Cross-check pilot, co-pilot and ESIS ADI information.

5. MAG/DG switch (on AHRS panel) : Confirm in MAG position.  
Cross-check pilot, co-pilot and ESIS compass headings.

6. Altimeters : Verify automatic baro setting on local QNH.  
Cross-check pilot, co-pilot and ESIS altimeter information.

7. VSIs : Confirm pilot, co-pilot and ESIS VSIs indicating zero ( $\pm 50$  ft/min).

8. Radio altimeter : Confirm between 0 ft and 5 ft.

9. NR switch : AUTO and confirm N2 / NR stabilise at 102%.  
102% position and confirm N2 / NR remain at 102%.  
Return to AUTO.

**SYS  
CHECKS**

---

- 10. HTAWS As required.
- 11. TAS As required.
- 12. EFIS SINCH As required.

SYS  
CHECKS

## **BEFORE TAKE-OFF CHECKS, GROUND TAXIING, TAKE-OFF**

|                               |           |
|-------------------------------|-----------|
| <b>BEFORE TAKE-OFF CHECKS</b> | <b>89</b> |
| <hr/>                         |           |
| <b>GROUND TAXIING</b>         | <b>89</b> |
| <hr/>                         |           |
| <b>TAKE-OFF</b>               | <b>90</b> |

TAXI  
T/OFF

**This Page Is Intentionally Left Blank**

TAXI  
T/OFF

**BEFORE TAKE-OFF CHECKS**

1. Cockpit lights : As required.
2. Position and anti-collision lights : Check and leave as required.
3. Landing lights : As required.

**CAUTION**

Turn both pitot heat ON for flight in visible moisture and/or rain regardless of ambient temperature.

4. Pitot heat : As required.
5. NR switch : Confirm in AUTO and N2 / NR stabilised at 102%.

**CAUTION**

When engine torque limiter is enabled, the AEO engine total torque is limited to a combined torque value of 220%. OEI engine torque limit remains at 162%.

6. TQ LIM pushbutton : If required, push to enable TORQUE limiter function, and confirm LIMITER ON advisory message appears.
7. Parking brake : OFF. Confirm PARK BRK ON message suppressed.
8. Warning and Caution messages : Confirm none.
9. Engine Power Assurance : As required. Refer to Section Check "PERFORMANCE".

**TAXI  
T/OFF****GROUND TAXIING**

1. Nose wheel lock : OFF.
2. Collective and cyclic : Increase collective slowly and move the cyclic stick gently forward to start movement.
3. Pedal brakes : Check operation.
4. Pedals : As required, to select direction.
5. Collective and pedal brakes : To reduce speed and stop, lower the collective and apply pedal brakes.

**TAKE-OFF****Note**

Instruction in **blue** are applicable only if kit P/N 109-B811-02 (fixed landing gear) is not installed.

**HOVER TAKE-OFF**

1. Nose wheel : Align forward.
2. Nose wheel lock : ON.
3. Flight controls : Apply as necessary to lift the helicopter to a 3 ft AGL hover.
4. Flight instruments : Check.
5. Engine parameters : Confirm within limits.
6. Transmission parameters : Confirm within limits.
7. Hydraulic systems parameters : Confirm within limits.
8. N2 / NR : Confirm N2 / NR 102%.
9. Cyclic / Collective : Rotate approximately 10 deg nose down from hover datum. While accelerating increase slightly the torque to avoid loss of altitude.  
At 30 KIAS increase torque by 15% and adjust cyclic to obtain 0 deg attitude.  
Continue acceleration to Vy. At Vy increase torque as required for the desired flight path.

**CAUTION**

Do not fly with landing gear operating or extended at speeds above 140 KIAS.

10. Landing gear lever : UP (after 200 ft RAD ALT)  
MAIN UTIL CHRG caution message is displayed during landing gear retraction, then clears when landing gear is locked.  
Confirm landing gear is up and locked (3 green lights and red light extinguished).
11. N2 / NR : Confirm N2 / NR stabilizes at 100%.

TAXI  
T/OFF

**ROLLING TAKE-OFF**

1. Nose wheel : Align forward.
2. Nose wheel lock : ON.
3. Collective and cyclic : Apply as necessary to obtain forward speed on the ground. Apply collective as necessary to become airborne. Accelerate to  $V_y$  and rotate to desired climb attitude.
4. Landing gear lever : UP (after 200 ft RAD ALT)  
MAIN UTIL CHRG caution message is displayed during landing gear retraction, then clears when landing gear is locked.  
Confirm landing gear is up and locked (3 green lights and red light extinguished).
5. N2 / NR : Confirm N2 / NR stabilizes at 100%.

**CAUTION**

Do not fly with landing gear operating or extended at speeds above 140 KIAS.

TAXI  
T/OFF

**This Page Is Intentionally Left Blank**

TAXI  
T/OFF

## **IN FLIGHT**

**IN FLIGHT**

**95**

**IN  
FLIGHT**

IN  
FLIGHT

**This Page Is Intentionally Left Blank**

**IN FLIGHT**

1. Load Share (LD-SH) switch : As required.
2. TQ LIM pushbutton : As required.
3. Pedals : Apply as necessary to maintain direction.
4. Flight instruments : Check.
5. Engine parameters : Confirm within limits.
6. Transmission parameters : Confirm within limits.
7. Hydraulic systems parameters : Confirm within limits.
8. Landing lights (if used) : OFF.  
LANDING LT ON advisory message suppressed.

**CAUTION**

Turn both pitot heaters on for flight in visible moisture and/or in rain, regardless of ambient temperature.

9. Pitot heat : As required.
10. Compass : Confirm all synchronized.
11. Radios / Navigation : As required.

**Note**

When the VHF (COM) systems are tuned on frequencies which are within  $\pm 4$  MHz, the transmitting radio can produce loss of sensitivities on the receiving radios.

**IN  
FLIGHT**

## SEARCHLIGHT OPERATING PROCEDURE

### CAUTION

Maximum speed for searchlight extension, orientation and retraction 135 KIAS.

### Extension

1. SEARCH CONTR / PWR :ON.  
circuit breakers
2. EXT / RETR / L / R switch : EXT (to extend light in the desired (on collective grip) position).
3. ON / OFF / STOW switch : ON.  
(on collective grip)

#### Note

With the switch in OFF position the light remains extinguished in the position where it has been left.

4. EXT / RETR / L / R switch : Set as necessary.  
(on collective grip)

#### Note

Moving switch to L or R position the searchlight rotates left or right. It is possible to adjust the light in an intermediate position, from stowed to extended, by temporarily moving the switch to EXT or RETR position.

### Retraction

1. ON / OFF / STOW switch : STOW then OFF.  
(on collective grip)

#### Note

In STOW position the light is extinguished.

IN  
FLIGHT

## AUTOMATIC FLIGHT CONTROL SYSTEM

### Collective Safety Function

The collective safety function (CSF) is active when any collective upper mode (ALT, ALTA, VS, RHT, GS, NGS, GA) is engaged. The function limits, if necessary, the collective commands to prevent:

- Exceedence of Maximum Continuous Power for torque, N1, TOT AEO or OEI. A PWR LIM alert message is displayed on the PFD when Power Limitation is active.
- Entering into autorotation (minimum torque 10% on each engine AEO or 20% OEI). A PWR LIM alert message is displayed on the PFD when Power Limitation is active.
- The aircraft descending through the safety height calculated as a function of descending speed and proximity to the ground. LOW HT alert message is displayed on the PFD when the Low Height Limitation is active.

When Collective Safety Function is active, engaged collective mode is annunciated as degraded (Mode annunciation in amber box flashing for 5 seconds then steady).

## ILS APPROACHES

It is recommended that IFR approaches be carried out with both ILS1 and ILS2 receivers tuned on the same frequency.

## EFIS SYSTEM

Refer to Chelton Pilot's Operating Guide and Reference for more details on this installation.

## FLIGHT MANAGEMENT SYSTEM

Normal operating procedures are outlined in the Flight Management System (FMS) paragraph of EFIS Pilot's Guide for the AW109SP applicable to the software version installed on the aircraft.

IN  
FLIGHT

### *Definitions and explanation of terms*

**Area navigation (RNAV):** A method of navigation which permits aircraft operation on any desired lateral track within the coverage of ground or space-based navigation aids or within the limits of the capability of self-contained aids, or a combination of these.

**Navigation application:** The application of a navigation specification and the supporting NAVAID infrastructure, to routes, procedures, and/ or defined airspace volume, in accordance with the intended airspace concept.

**Navigation specification:** A set of aircraft and aircrew requirements needed to support Performance-based Navigation operations within a defined airspace. There are two kinds of navigation specification:

- RNAV specification: A navigation specification based on area navigation that does not include the requirement for on-board performance monitoring and alerting, designated by the prefix RNAV (RNAV 5, RNAV 2, RNAV 1).
- RNP (Required Navigation Performance) specification: A navigation specification based on area navigation that includes the requirement for on-board performance monitoring and alerting, designated by the prefix RNP (RNP 2, RNP 1, RNP 0.3, RNP APCH).

**Performance-based navigation (PBN):** Area navigation based on performance requirements for aircraft operating along an ATS route, on an instrument approach procedure or in a designated airspace.

**RNAV system:** A navigation system (as part of a Flight Management System (FMS)) which permits aircraft operation on any desired lateral track within the coverage of station-referenced navigation aids or within the limits of the capability of self-contained aids, or a combination of these.

In accordance with ICAO 9613 PBN manual (4th edition), AMC 20-27, AMC 20-26, AC 90-105A, AC90-101A and AC20-138D documents the FMS is capable of operations in airspaces designated for the following Navigation Specifications: Basic RNAV (B-RNAV) or RNAV 5 En-route, RNAV 2 Enroute, Precision RNAV (P-RNAV) or RNAV 1, RNP 2 Enroute, RNP 1 Enroute and Terminal Operations (SID and STAR procedures), PinS departure, RNP APCH approach with LNAV or LNAV/VNAV or LP or LPV minima, PinS Approach with LNAV or LPV minima, RNP AR APCH with RNP 0.3 minima and Missed Approach RNP 1.0.

The FMS meets the requirements for RNP operations with RF legs when used in association with RNP1 and RNP (AR)APCH specifications. The RF functionality can be used during SIDs, STARs, the initial and intermediate approach segments and missed approach.

The FMS provides all Navigation information necessary for the aircraft to permit the navigation along any desired flight path within the coverage of GPS system (augmented with SBAS system, if available) and provide, if coupled, Lateral and Vertical (approach only) steering data to the AFCS system.

The FMS doesn't permit the temperature compensation of the destination airport to be entered therefore it doesn't automatically adjust the vertical flight path for temperature effect during APV Baro-VNAV approach.

In order to be capable of performing RNP operations the FMS automatically determines aircraft position in the horizontal plane using inputs from two Global Navigation Satellite System (GNSS) receivers TSO approved C146c class Gamma; both GNSS receivers are able to provide the GNSS position with SBAS (Satellite-Based Augmentation System) augmented accuracy if the aircraft is flying within any SBAS coverage area (e.g. WAAS, EGNOS, MSAS or GAGAN).

**Note**

RNP2, RNP1, RNP0.3 procedures or RNP (AR) APCH approach if under SBAS coverage only need to confirm via NOTAM that there is no SBAS outage; while for any RNP procedure or approach outside SBAS coverage area or during a SBAS outage, perform the pre-departure P-RAIM for destination. In the event of a predicted (PRAIM) HIL above the required RNP, for more than 5 minutes for any part of the RNP operation, the flight planning should be revised (e.g. delaying the departure or planning a different ATS route).

**Note**

In accordance with PBN regulations, RNP procedures and RNP (AR) APCH approaches, including RF legs, are not allowed to be flown manually.

If P-RAIM of destination is required, select "FPL" on PLT or CPLT MFD then select "CREATE-EDIT..." menu. Select the voice "RAIM PREDICTION" and insert the destination airport and the estimated date and time of arrival.

The FMS automatically sets the lateral full scale deflection ( $\pm 2$  dots) of Lateral deviation bar/pointer equal to RNP for current phase of flight.

**TAWS**

- The FLTA function is automatically inhibited when in the Terminal, Departure, IFR Approach or VFR Approach modes and within 2 NM of the reference point.
- The FLTA function is automatically inhibited when IAS or groundspeed is below 50 Kts.
- GPWS Modes 3 is automatically inhibited when below 50 ft AGL (radar altimeter AGL altitude).

IN  
FLIGHT

IN  
FLIGHT

**This Page Is Intentionally Left Blank**

## **APPROACH AND LANDING**

**APPROACH AND LANDING**

**103**

**APPR  
LAND**

**This Page Is Intentionally Left Blank**

APPR  
LAND

## APPROACH AND LANDING

### Note

The VFR approach function does not provide terrain or obstruction clearance. Extreme care should be taken when using the VFR approach function at night or in marginal VFR conditions.

### Note

Instruction in **blue** are applicable only if kit P/N 109-B811-02 (fixed landing gear) is not installed.

|                       |                                                                                                                                                                                                                                                                                                                         |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Landing gear lever | : DOWN.<br>MAIN UTIL CHRG caution message is displayed during landing gear extension, then clears when landing gear is locked.<br>Confirm landing gear is down and locked (3 green lights indicated, red light extinguished).<br>If previously activated, LANDING GEAR caution message clears and audio warning ceases. |
| 2. N2 / NR            | : Below 75 KIAS confirm N2 / NR stabilizes at 102%.                                                                                                                                                                                                                                                                     |
| 3. Nose wheel lock    | : ON.                                                                                                                                                                                                                                                                                                                   |
| 4. Parking brake      | : OFF. (ON if landing on a slope)                                                                                                                                                                                                                                                                                       |
| 5. Landing lights     | : As required.                                                                                                                                                                                                                                                                                                          |

## VERTICAL LANDING

### CAUTION

While conducting a slope landing, care must be taken to avoid the tail making contact with the ground.

|                    |                                                                                                                                                                                                                                                                                                     |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Landing path    | : Reduce the airspeed gradually and at 70 ft AGL flare and apply collective to pass 30 KIAS at 30 ft AGL. Bring the helicopter to a hover at 3 ft AGL. Descend vertically to the ground.<br>After ground contact, lower the collective to the minimum pitch or as necessary if taxiing is required. |
| 2. Pedal brakes    | : As necessary.                                                                                                                                                                                                                                                                                     |
| 3. Nose wheel lock | : OFF if taxiing is required.                                                                                                                                                                                                                                                                       |

APPR  
LAND

**RUNNING LANDING**

1. Landing path : Reduce the airspeed gradually and apply collective to bring the helicopter to touchdown at a forward speed suitable for the landing surface and with minimum vertical speed.  
After ground contact, lower the collective as necessary to control the helicopter.
2. Pedal brakes : As necessary to stop the helicopter or to reach a suitable taxiing speed.
3. Nose wheel lock : OFF if taxiing is required.

APPR  
LAND

## **SHUTDOWN**

**SHUTDOWN**

**107**

**SHT DN**

**This Page Is Intentionally Left Blank**

**SHT DN**

**SHUTDOWN**

1. Nose wheel lock : ON.
2. Parking brake : ON.
3. Collective lever : Confirm fully down.
4. Cyclic stick and pedals : Centered and trimmed.

**CAUTION**

If there is evidence of any abnormal TOT increase after shutdown, perform a **DRY MOTORING RUN**.

**CAUTION**

Do not apply collective during rotor deceleration, particularly in windy conditions.

Below 85% NR, avoid any cyclic movement except to prevent droop stop contact.

5. ENG 1 and 2 MODE switches : IDLE and then to OFF.

**Note**

If necessary, the engine may be shut down directly from FLT.

6. FUEL PUMP 1 and 2 switches : OFF.  
FUEL PUMP 1 and FUEL PUMP 2 caution messages displayed.
7. FUEL VALVE 1 and 2 switches : CLOSED (bars horizontal).
8. XFEED VALVE switch : Confirm in AUTO position.
9. Rotor brake : Apply below 40% NR.
10. PITOT 1 and 2 heat switches : OFF.
11. Miscellaneous switches : OFF.
12. MSTR AVNX switch : As required.
13. INV 1 and INV 2 switches : OFF.
14. External lights : OFF.
15. Cockpit lights : OFF.
16. Rotor brake lever : Disengaged (fully forward).
17. BAT, GEN 1 and GEN 2 switches (gang bar) : OFF only when N1 at 0%.

SHT DN

**This Page Is Intentionally Left Blank**

**SHT DN**

## **POST FLIGHT CHECKS, FLIGHT HANDLING**

**POST FLIGHT CHECKS**

**111**

**FLIGHT HANDLING CHARACTERISTICS**

**111**

**PST FLT  
FLT HND**

**This Page Is Intentionally Left Blank**

PST FLT  
FLT HND

## POST FLIGHT CHECKS

If conditions require, perform the following, referring to Section 8 of Basic RFM for additional information:

1. Pitot-static tubes, engine : Installed.  
intake and exhaust covers

**CAUTION**

Following a slope landing, the parking brake holding capability is guaranteed for 2 minutes from rotor stop.

2. Wheel chocks : As required.

If conditions require, perform the following:

Pitot, intake and exhaust : Installed.  
covers

**Note**

The pitot tube covers must be installed at least 5 minutes after pitot heat has been switched off. The engines exhaust ducts covers must be installed at least 30 minutes after engine shut down.

## FLIGHT HANDLING CHARACTERISTICS

Handling is conventional in normal forward, sideways and rearwards flight manoeuvres. Flight control forces may be adjusted by altering friction settings.

### ENGINE LIMIT GOVERNING

The helicopter is provided with an engine torque limiter function aimed at reducing pilot's workload. However, it is still the pilot's responsibility to operate and maintain the helicopter within engine and transmission limits.

The torque limiter can be enabled, upon pilot's decision, by pressing once the TQ LIM pushbutton on the collective grip. Disabling the torque limiter is obtained by pressing again the TQ LIM pushbutton.

At helicopter power-up, the torque limiter is disabled by default, and the ECU will not prevent the pilot from exceeding the applicable limits. With the torque limiter disabled, the ECU controls the engine torque according to the following values:

PST FLT  
FLT HND

---

|      |                      |      |
|------|----------------------|------|
| AEO: | Torque (TRQ1 + TRQ2) | 324% |
| OEI: | Torque               | 180% |

When the TQ LIM pushbutton is depressed (LIMITER ON advisory message displayed), the torque limiter is enabled and the ECU will prevent the pilot from exceeding the following applicable limits:

|      |                      |      |
|------|----------------------|------|
| AEO: | Torque (TRQ1 + TRQ2) | 220% |
| OEI: | Torque               | 162% |

#### **Note**

Regardless of torque limiter status, N1 and TOT always remain limited at 103% and 970 °C respectively.

#### **CLIMB SPEED**

The climb speed recommended is the best climb speed of the helicopter,  $V_y$ .

$V_y$  is 80 KIAS up to 10000 ft, and then decreases by 2 kts every 1000 ft to become 60 KIAS at 20000 ft.

#### **AUTOROTATIVE DESCENT**

1. Maintain speed within Power-OFF limits.
2. Reduce collective to enter autorotation.
3. Adjust collective to maintain NR within appropriate limits.
4. Adjust attitude to obtain desired speed:
  - Maximum range is obtained at approximately 120 KIAS and minimum NR
  - Minimum rate of descent is obtained at  $V_y$  and minimum NR
  - Maximum rate of descent is obtained at  $V_{ne}$  Power-OFF and maximum NR.
5. To recover to powered flight, increase collective pitch until freewheels are joined and finally, increase power to stop the rate of descent.

#### **STEEP APPROACHES AND VERTICAL DESCENT MANOEUVRES**

Low speed steep approaches (up to 20 kts) and vertical descent manoeuvres should be performed with a rate of descent not exceeding 900 ft/min.

## **DENSITY ALTITUDE, POWER ASSURANCE CHECKS**

**DENSITY ALTITUDE** **115**

**POWER ASSURANCE CHECKS** **116**

DENS ALT  
PWR ASS

**This Page Is Intentionally Left Blank**

DENS ALT  
PWR ASS

## DENSITY ALTITUDE

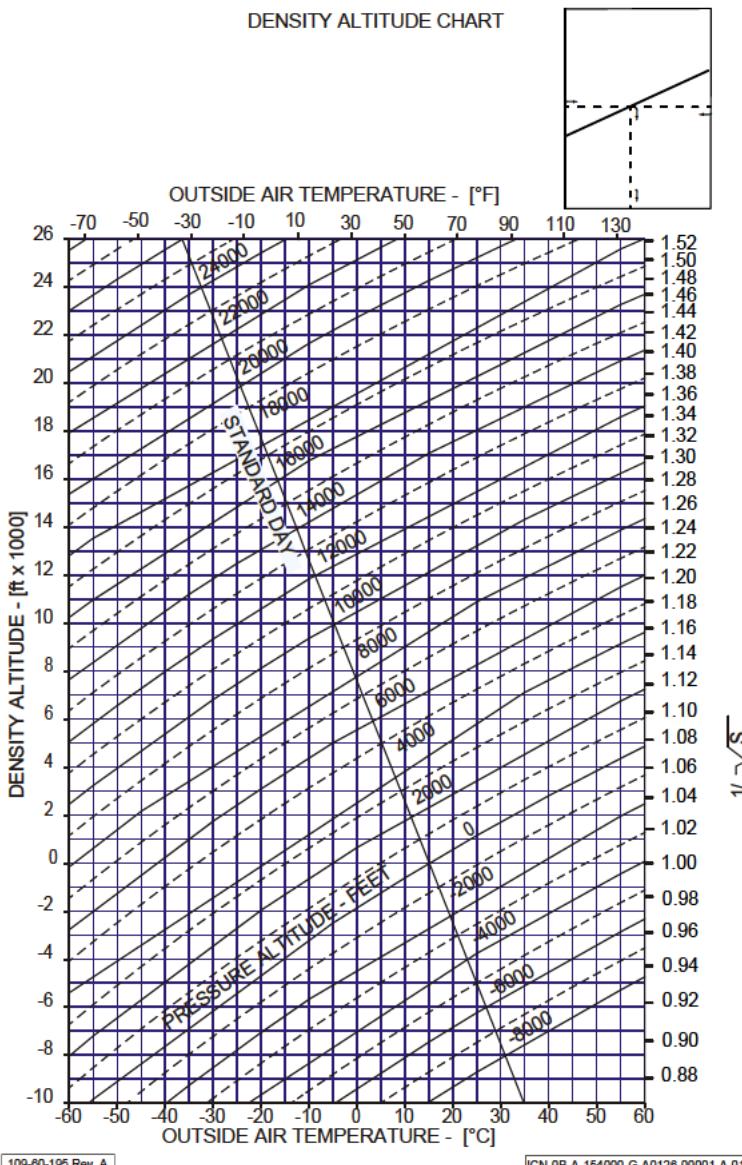



Figure 3-1 Density - altitude chart

## POWER ASSURANCE CHECKS

The purpose of the Engine Power Assurance Checks is to provide a means of monitoring engine health on an on-going basis. Two check types are provided for this purpose:

- a Ground/Hover Power Assurance Check
- a Level Flight Power Assurance Check.

A Ground/Hover Power Assurance Check procedure should be used to check if the engine power available, before take-off, is within the limits to guarantee the performance presented in this Section.

Another procedure is provided, to enable the operator to check the engine power in level flight. The procedure should be used to check if the power available is within the limits to guarantee the performance presented in this Section and maintain a trend chart to monitor the deterioration of the engine with operating hours.

### CAUTION

The curves below OAT -25 °C apply only to the helicopter configured with Cold Operation Kit (Supplement 15 of RFM).

## POWER CHECK INTERVALS

Either ground or inflight power check shall be accomplished:

- at intervals not exceeding 50 flying hours or monthly, whichever comes first, for non Category A operations.
- whenever abnormal engine function is suspected.

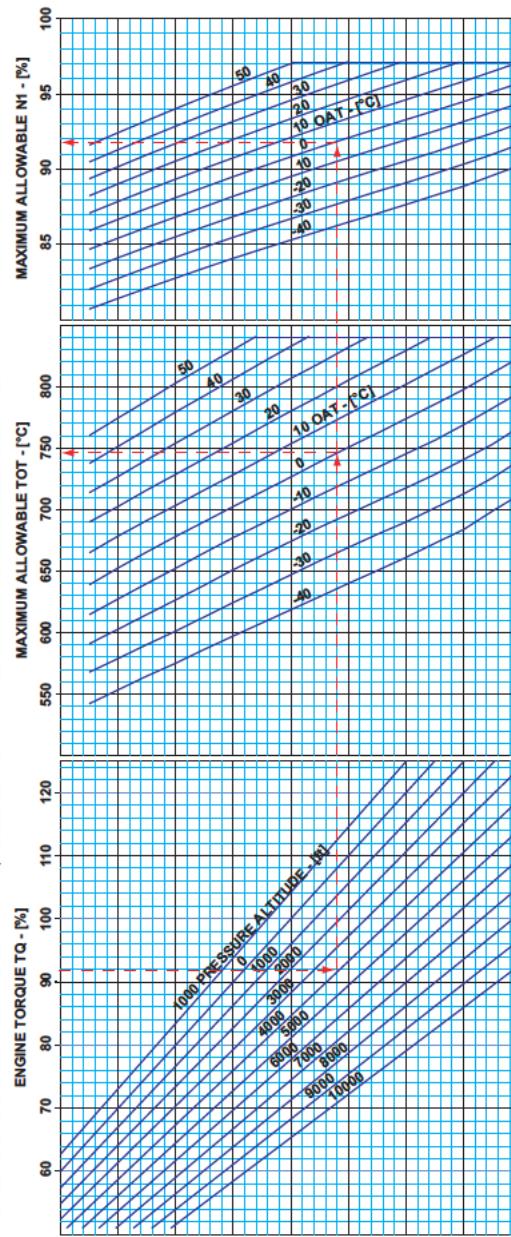
Refer to the following graphics.

**POWER ASSURANCE CHECK PW207C ENGINES  
HOVER**

- HEATER/EC OFF
- GENERATOR LOAD TO MINIMUM
- SET NR to 102%
- TEST ENGINE MODE SWITCH: FLIGHT
- OTHER ENGINE MODE SWITCH: IDLE

- INCREASE COLLECTIVE UNTIL LIGHT ON WHEELS OR HOVERING AT 3 FEET, NOSE ON WIND, DO NOT EXCEED 840°C TOT OR 97.1% N1 OR 125% TQ

- STABILIZE POWER 1 MINUTE, THEN RECORD OAT, PRESSURE ALTITUDE, ENGINE TORQUE, TOT AND N1


- ENTER CHART AT INDICATED TQ, MOVE DOWN TO INTERSECT PRESSURE ALTITUDE, PROCEED TO THE RIGHT TO INTERSECT OAT.

- THEN MOVE UP TO READ VALUES FOR MAXIMUM ALLOWABLE TOT AND N1

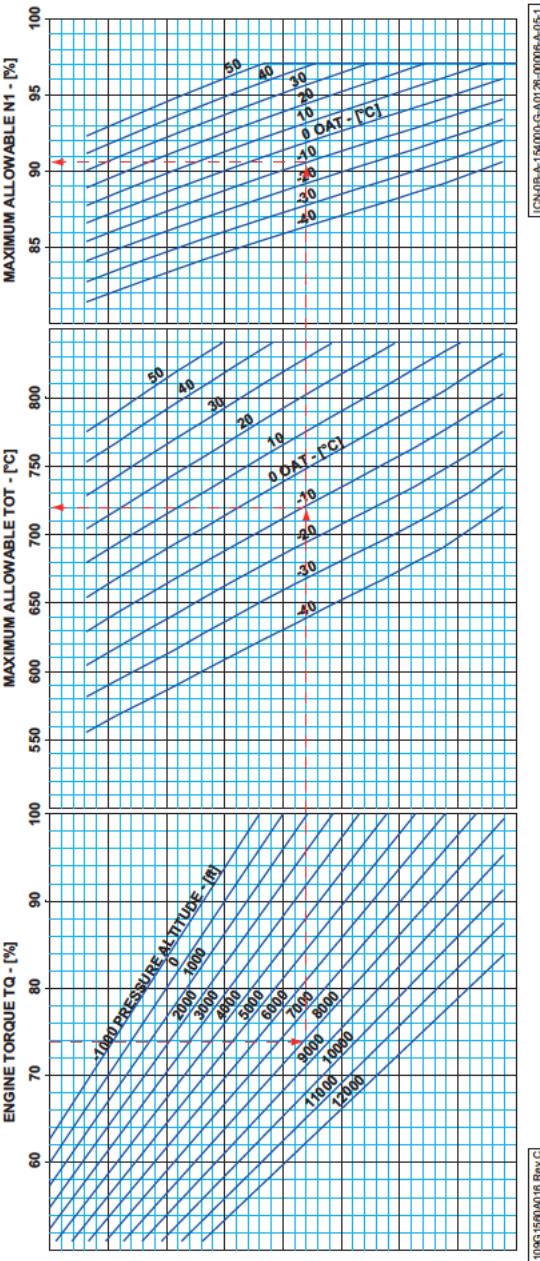
- IF INDICATED TOT OR N1 EXCEEDS MAXIMUM ALLOWABLE, REPEAT CHECK, STABILIZING POWER FOR TWO MINUTES.

- REPEAT CHECK USING OTHER ENGINE

- IF EITHER ENGINE EXCEEDS ALLOWABLE TOT OR N1, PUBLISHED PERFORMANCE MAY NOT BE ACHIEVABLE. REFER TO EMM



ENM/04/15/00/03/01/26/0000/A-04/1


ENM/15/00/03/01/26/0000/A-04/1

**DENS ALT  
PWR ASS**

**Figure 3-2 Power Assurance Check in Hover**

### POWER ASSURANCE CHECK PW207C ENGINES IN FLIGHT

- HEATER/ECS OFF
- GENERATOR LOAD TO MINIMUM
- SET NR to 100%
- ESTABLISH LEVEL FLIGHT AT LEAST 1000 ft AGL and ARSPED=100±10 KAS
- TEST ENG NR, SET ENG GOV, SW TCH to MANUAL
- OTHER ENG NR, LEAVE ENG, GOV, SW TCH to AUTO
- OPERATE TEST ENG, TRIM TO INCREASE POWER UNTIL ENGINE TORQUE SWITHIN TEST RANGE, DO NOT EXCEED 840°C TOT OR 97.1% N1 OR 100% TQ
- STABILIZE POWER 1 MINUTE, THEN RECORD OAT, PRESSURE ALTITUDE, ENGINE TORQUE, TOT AND N1
- ENTER CHART AT INDICATED TO, MOVE DOWN TO INTERSECT PRESSURE ALTITUDE, PROCEED TO THE RIGHT TO INTERSECT OAT, THEN MOVE UP TO READ VALUES FOR MAXIMUM ALLOWABLE TOT AND N1
- IF INDICATED TOT OR N1 EXCEEDS MAXIMUM ALLOWABLE, REPEAT CHECK, STABILIZING POWER FOR TWO MINUTES.
- REPEAT CHECK USING OTHER ENGINE
- IF EITHER ENGINE EXCEEDS ALLOWABLE TOT OR N1, AFTER STABILIZING TWO MINUTES, CARRY OUT A POWER ASSURANCE CHECK IN HOVER.



# HOVER CEILING, RATE OF CLIMB, FUEL CONSUMPTION, HEIGHT-VELOCITY DIAGRAMS OPERATION VS ALLOWABLE WIND

|                                    |            |
|------------------------------------|------------|
| <b>HOVER CEILING</b>               | <b>121</b> |
| <b>RATE OF CLIMB</b>               | <b>128</b> |
| <b>FUEL CONSUMPTION AT 3175 KG</b> | <b>145</b> |
| <b>HEIGHT-VELOCITY DIAGRAMS</b>    | <b>147</b> |
| <b>OPERATION VS ALLOWABLE WIND</b> | <b>151</b> |

HVR ROC  
FL HV AW

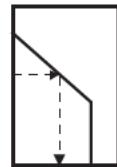
**This Page Is Intentionally Left Blank**

## HOVER CEILING

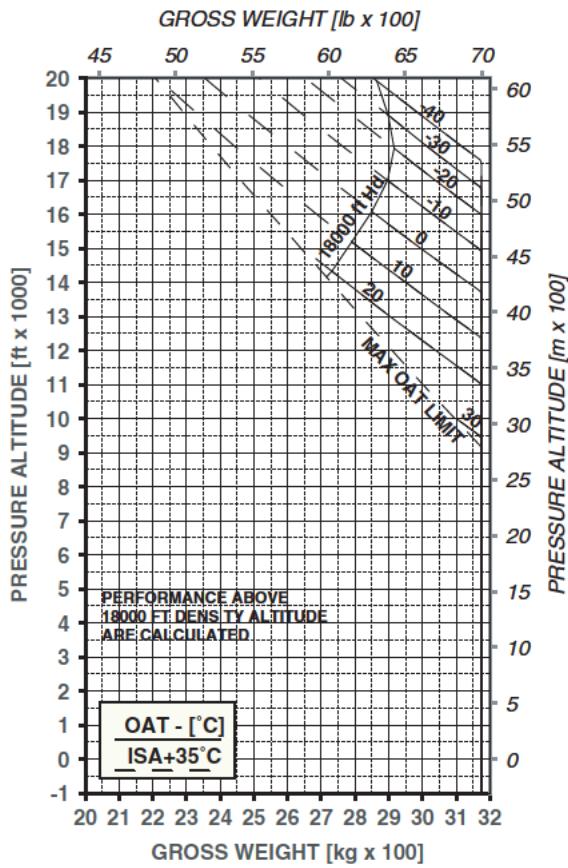
The Hover Ceiling charts define the maximum weights at which an IGE hover (at 3 ft wheel height) or an OGE hover (60 ft AGL) is possible for varying combinations of Pressure Altitude and OAT with main rotor speed (NR) at 102% and zero wind conditions

**CAUTION**

The curves below OAT -25 °C apply only to the helicopter configured with Cold Operation Kit (Supplement 15 of RFM).


HVR ROC  
FL HV AW

HOVER CEILING IN GROUND EFFECT  
TAKE OFF POWER AEO


ROTOR SPEED: 102 %

ZERO WIND

WHEEL HEIGHT: 3 FT

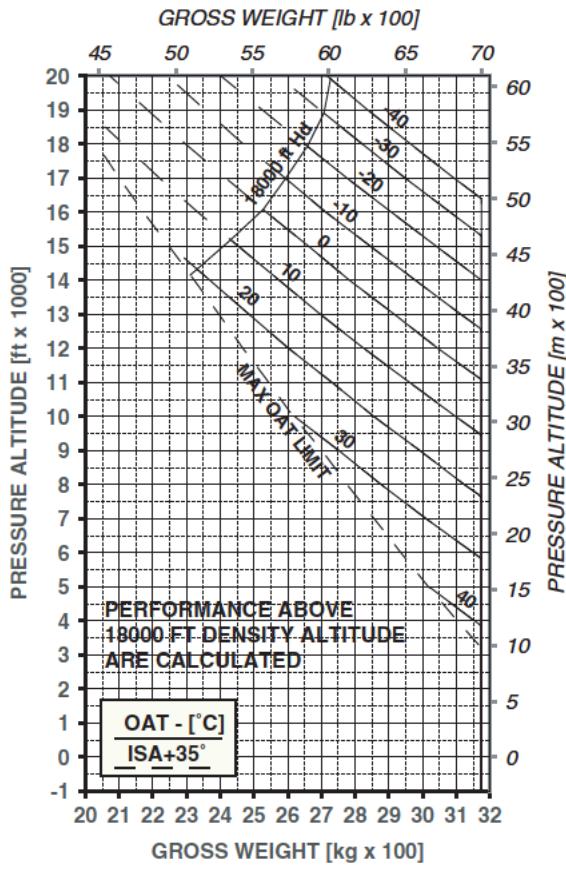


ELECTRICAL LOAD: 200 A TOTAL



109G1560A009 Rev.C

ICN-0B-C-154100-G-A0126-00001-A-02-1


HOVER CEILING IN GROUND EFFECT  
MAXIMUM CONTINUOUS POWER AEO

ROTOR SPEED: 102 %

ZERO WIND

WHEEL HEIGHT: 3 FT

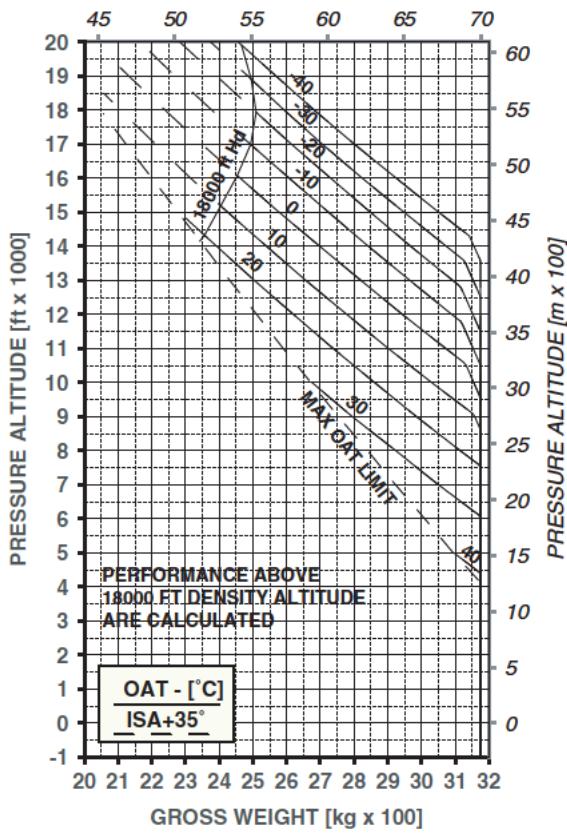
ELECTRICAL LOAD: 200 A TOTAL



109G1560A009 Rev C

ICN-0B-C-154100-G-A0126-00002-A-02-1

Figure 3-5 Hover Ceiling - IGE at Maximum Continuous Power - AEO

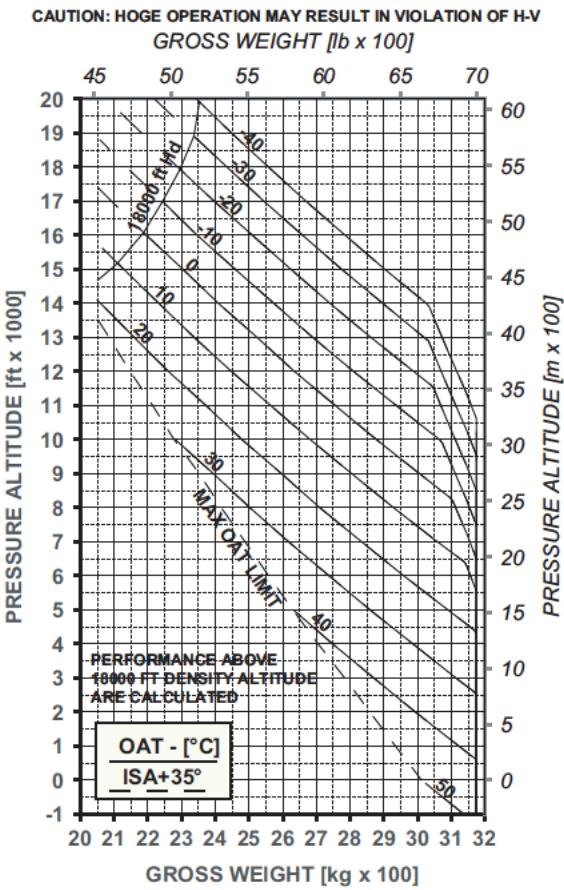

HVR ROC  
FL HV AW

HOVER CEILING OUT OF GROUND EFFECT  
TAKE OFF POWER AEO

ROTOR SPEED: 102 %

ZERO WIND

ELECTRICAL LOAD: 200 A TOTAL


CAUTION: HOGE OPERATION MAY RESULT IN VIOLATION OF H-V  
GROSS WEIGHT [lb x 100]

109G1560A009 Rev C

ICN-0B-C-154100-G-A0126-00003-A-02-1

HOVER CEILING OUT OF GROUND EFFECT  
MAXIMUM CONTINUOUS POWER AEOROTOR SPEED: 102 %  
ZERO WIND

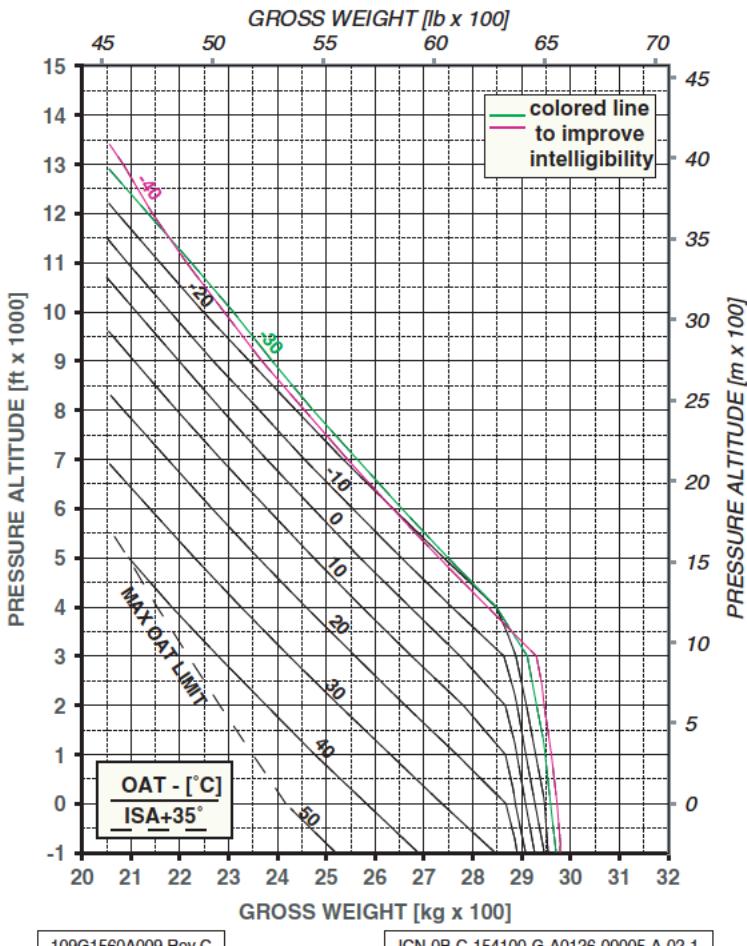
ELECTRICAL LOAD: 200 A TOTAL



109G1560A009 Rev.D

ICN-0B-C-154100-G-A0126-00004-A-03-1

Figure 3-7 Hover Ceiling - OGE at Maximum Continuous Power - AEO


HVR ROC  
FL HV AW

HOVER CEILING OUT OF GROUND EFFECT  
2.5 MINUTE POWER OEI

ROTOR SPEED: 102 %

ZERO WIND

ELECTRICAL LOAD: 200 A



HOVER CEILING OUT OF GROUND EFFECT  
MAXIMUM CONTINUOUS POWER OEI

ROTOR SPEED: 102 %

ZERO WIND

ELECTRICAL LOAD: 200 A

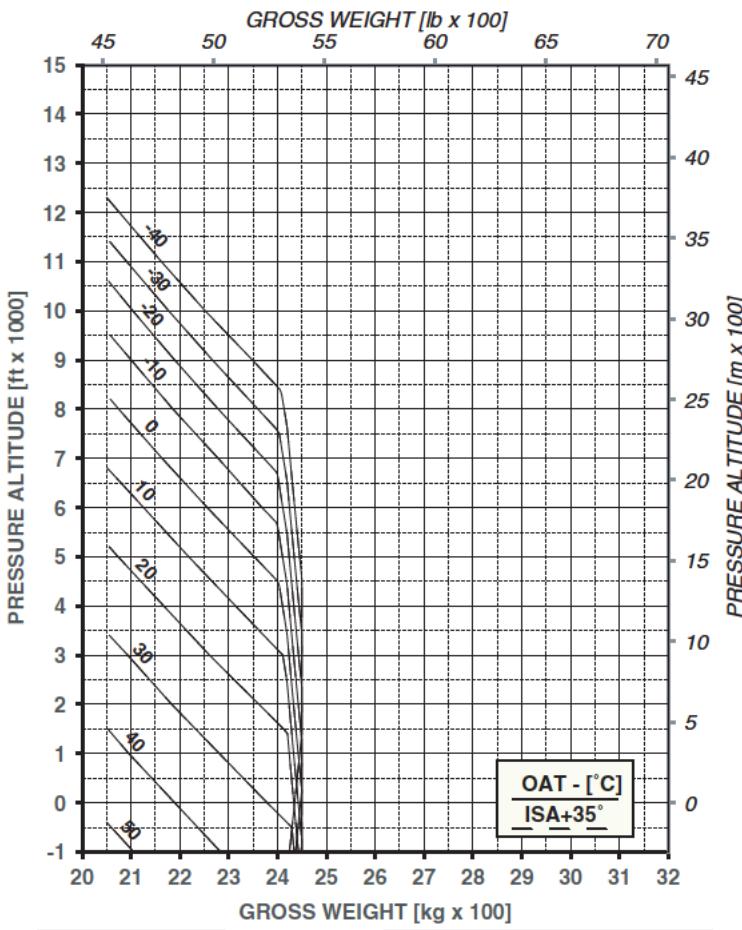
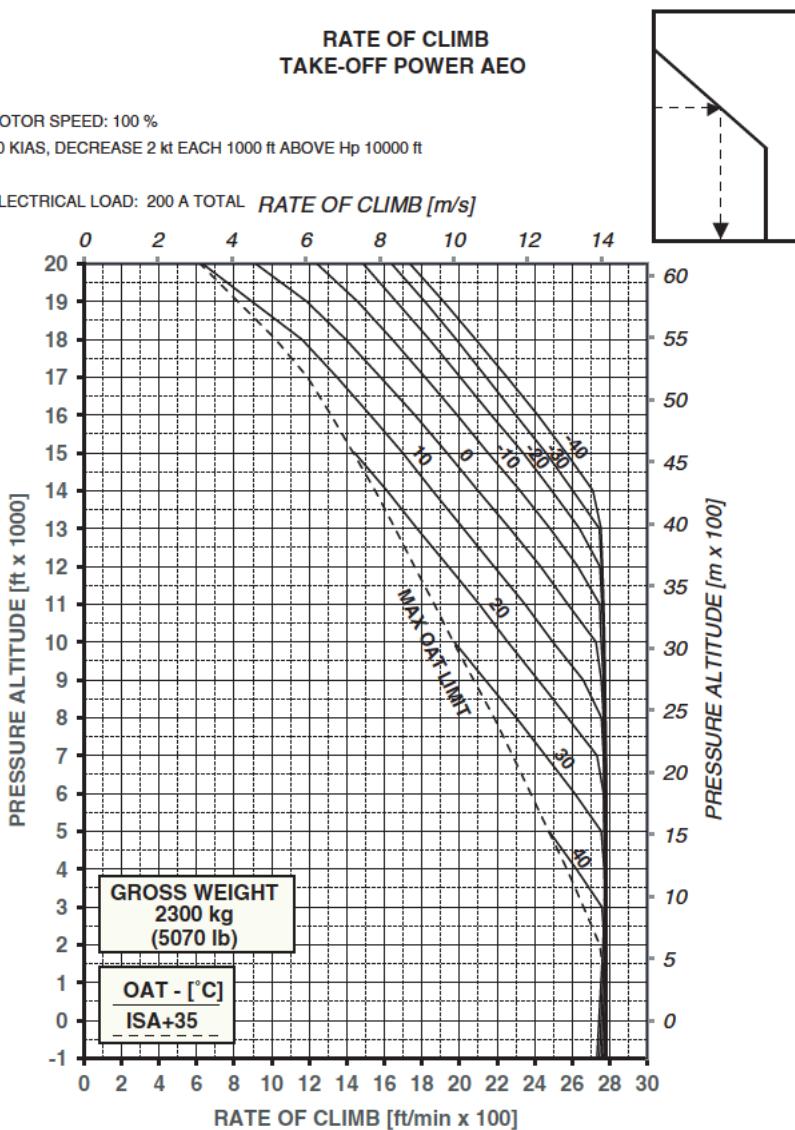



Figure 3-9 Hover Ceiling - OGE at Maximum Continuous Power - OEI

HVR ROC  
FL HV AW

## RATE OF CLIMB

The climb performance shown are based on flight test results and cover the range of gross weights from 2300 kg to the Maximum Gross Weight of 3175 kg. Rate of Climb (ROC) is given for the All Engines Operating (AEO) case and for the One Engine Inoperative (OEI) case.


For the AEO case, rate of climb is given with the engines operating at the Take-Off Power (TOP) rating limit and at the Maximum Continuous Power (MCP) rating limits.

For the OEI case, rate of climb is given with the engine operating at the 2.5 minute Power rating limit and at the Maximum Continuous Power rating limits. The datum speed for all Rate of Climb graphs is  $V_y$ , which is 80 KIAS up to 10000 ft and then decreases by 2 knots every 1000 ft to become 60 KIAS at 20000 ft.

Each graph presents the information for a specific Gross Weight. On each graph, additional information is provided relative to the applicable engine power rating. Care should be taken to ensure that the correct graph is utilized in obtaining Rate of Climb data.

### CAUTION

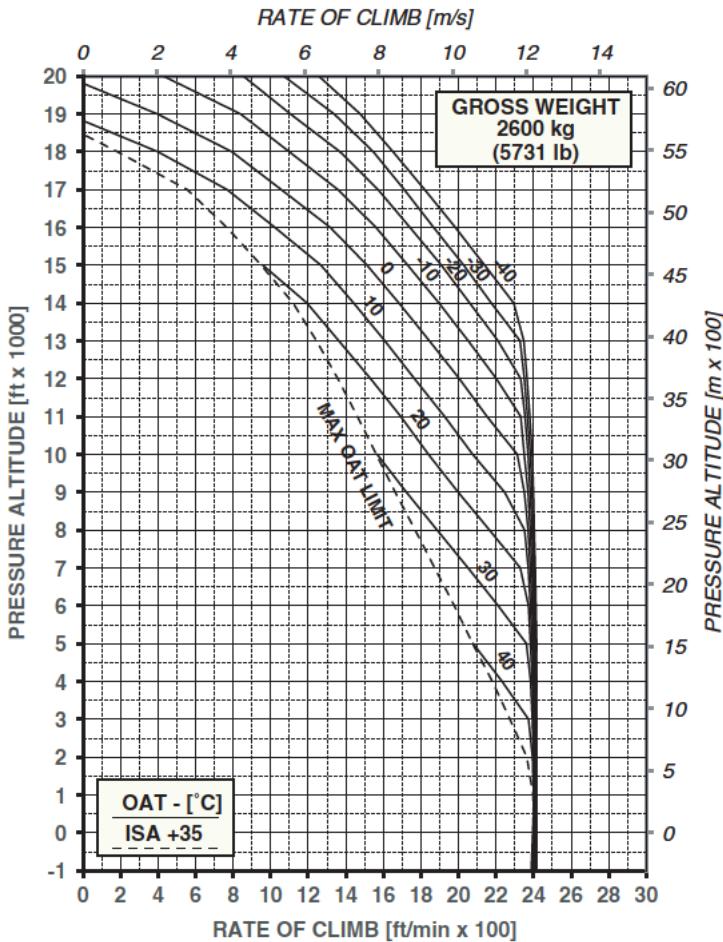
The curves below OAT -25 °C apply only to the helicopter configured with Cold Operation Kit (Supplement 15 of RFM).



109G1560A009 rev. C

ICN-0B-C-154300-G-A0126-00001-A-03-1

**Figure 3-10 Rate of Climb at Take-Off Power - AEO -  
Gross Weight 2300 kg**


HVR ROC  
FL HV AW

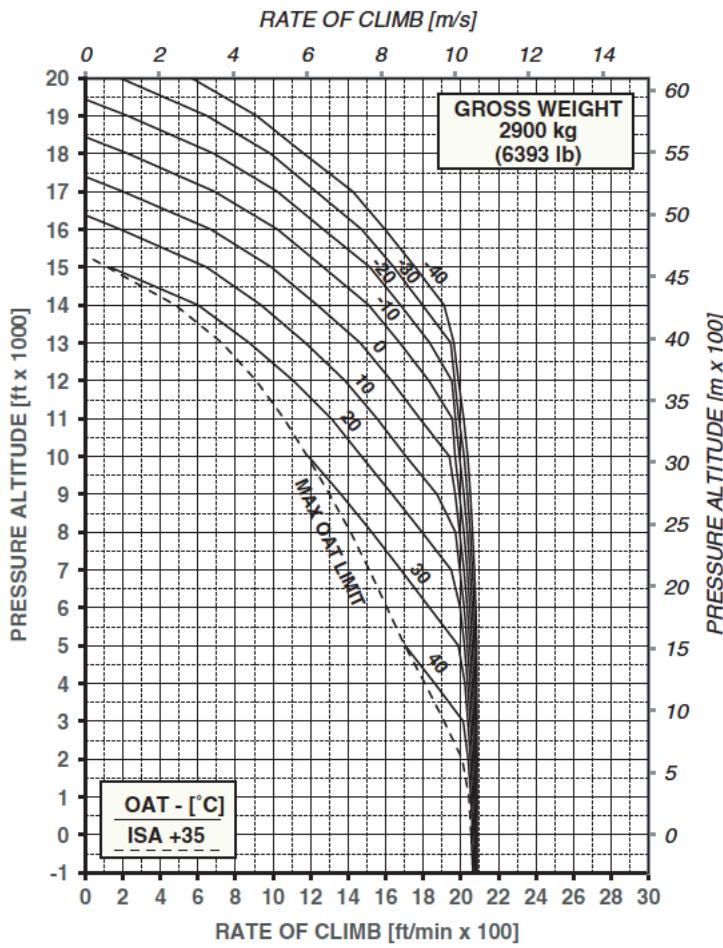
RATE OF CLIMB  
TAKE-OFF POWER AEO

ROTOR SPEED: 100 %

ELECTRICAL LOAD: 200 A TOTAL

80 KIAS, DECREASE 2 kt EACH 1000 ft ABOVE Hp 10000 ft




109G1560A009 rev. C

ICN-0B-C-154300-G-A0126-00002-A-03-1

RATE OF CLIMB  
TAKE-OFF POWER AEO

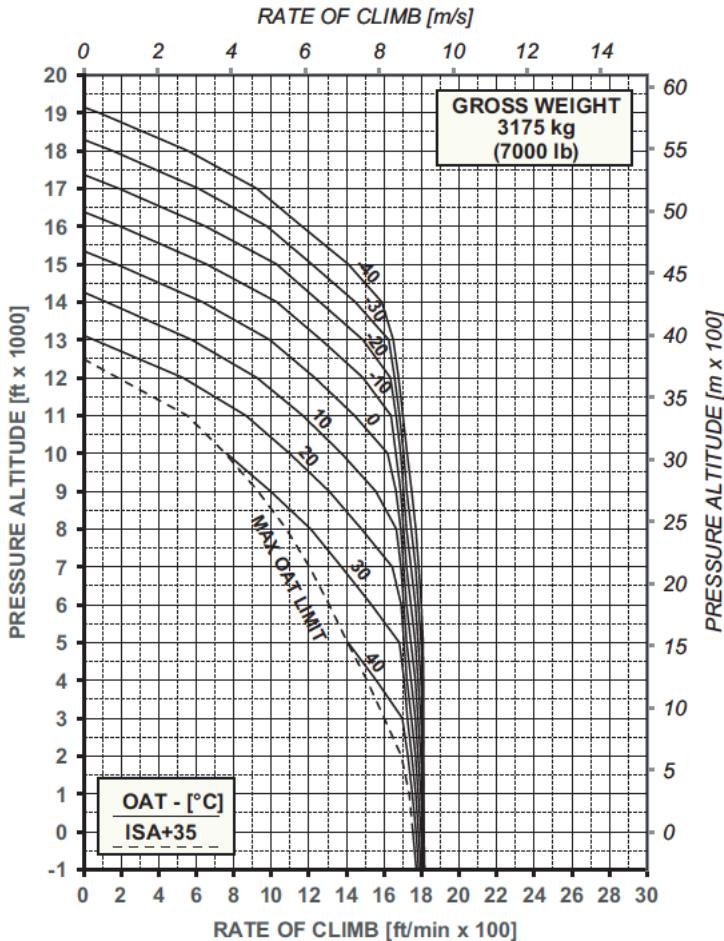
ROTOR SPEED: 100 %  
80 KIAS, DECREASE 2 kt EACH 1000 ft ABOVE Hp 10000 ft

ELECTRICAL LOAD: 200 A TOTAL



109G1560A009 rev. C

ICN-0B-C-154300-G-A0126-00003-A-03-1


Figure 3-12 Rate of Climb at Take-Off Power - AEO -  
Gross Weight 2900 kgHVR ROC  
FL HV AW

RATE OF CLIMB  
TAKE-OFF POWER AEO

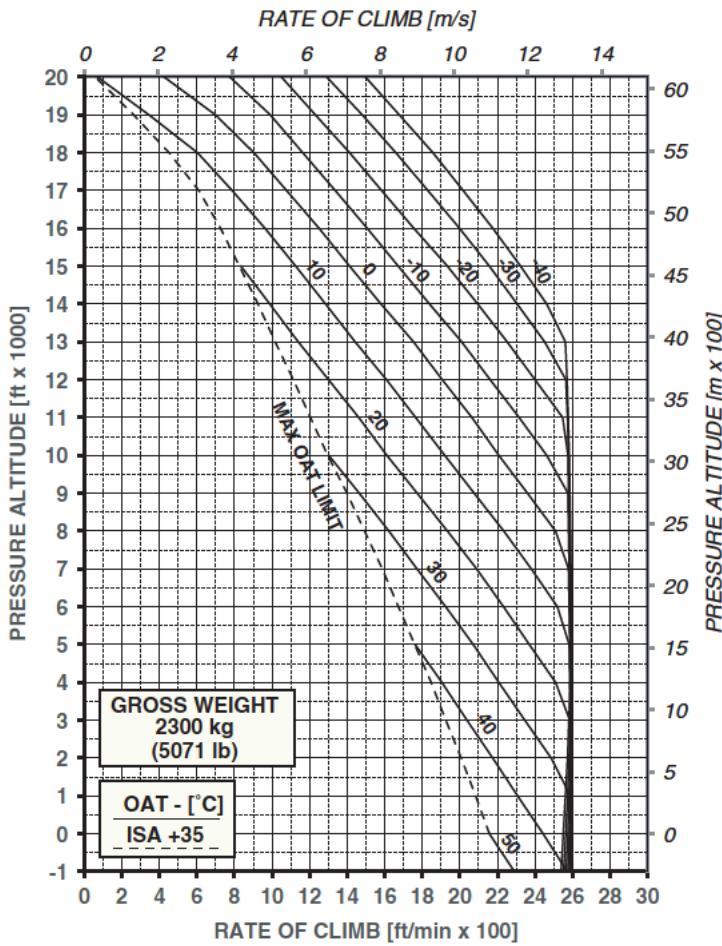
ROTOR SPEED: 100 %

ELECTRICAL LOAD: 200 A TOTAL

80 KIAS, DECREASE 2 kt EACH 1000 ft ABOVE Hp 10000 ft



109G1560A009 rev. C


ICN-0B-C-154300-G-A0126-00004-A-03-1

RATE OF CLIMB  
MAXIMUM CONTINUOUS POWER AEO

ROTOR SPEED: 100 %

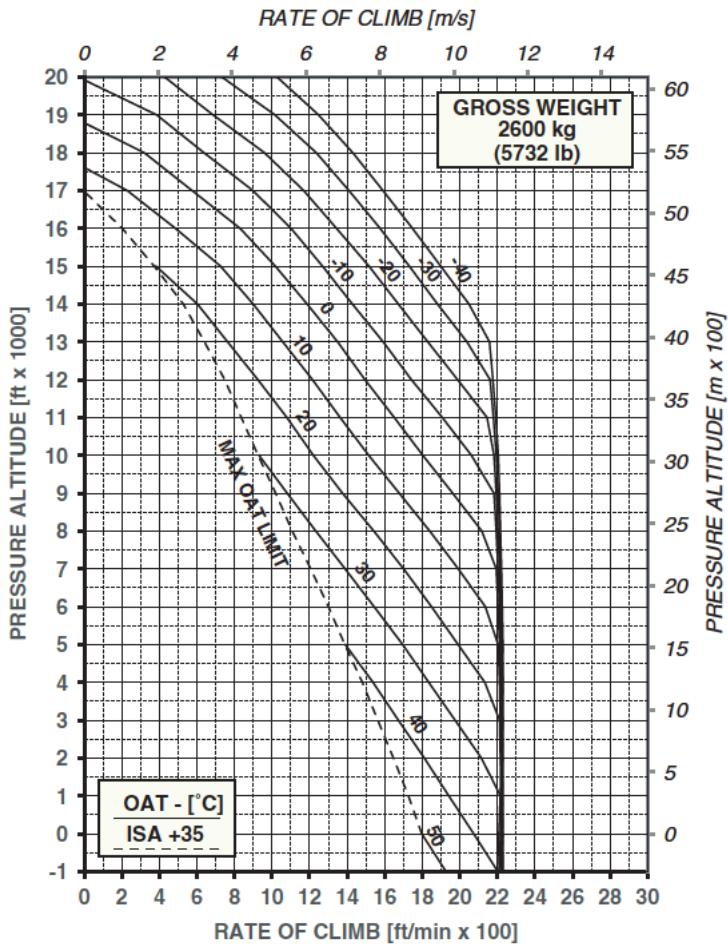
ELECTRICAL LOAD: 200 A TOTAL

80 KIAS, DECREASE 2 kt EACH 1000 ft ABOVE Hp 10000 ft



109G1560A009 rev. C

ICN-0B-C-154300-G-A0126-00005-A-03-1

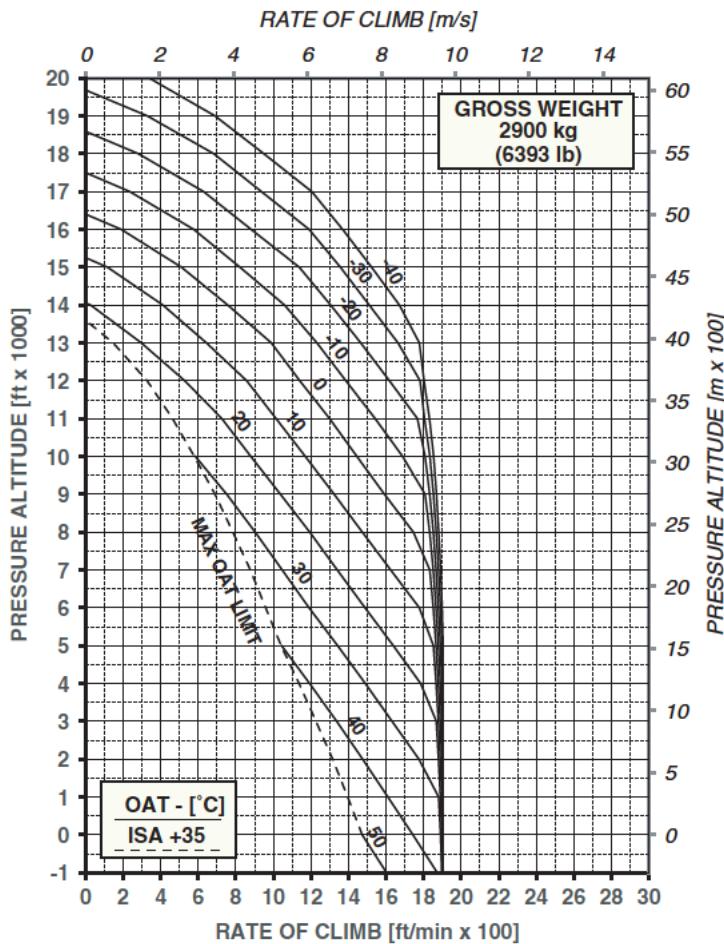

Figure 3-14 Rate of Climb at Maximum Continuous Power - AEO -  
Gross Weight 2300 kgHVR ROC  
FL HV AW

RATE OF CLIMB  
MAXIMUM CONTINUOUS POWER AEO

ROTOR SPEED: 100 %

ELECTRICAL LOAD: 200 A TOTAL

80 KIAS, DECREASE 2 kt EACH 1000 ft ABOVE Hp 10000 ft




109G1560A009 rev. C

ICN-0B-C-154300-G-A0126-00006-A-03-1

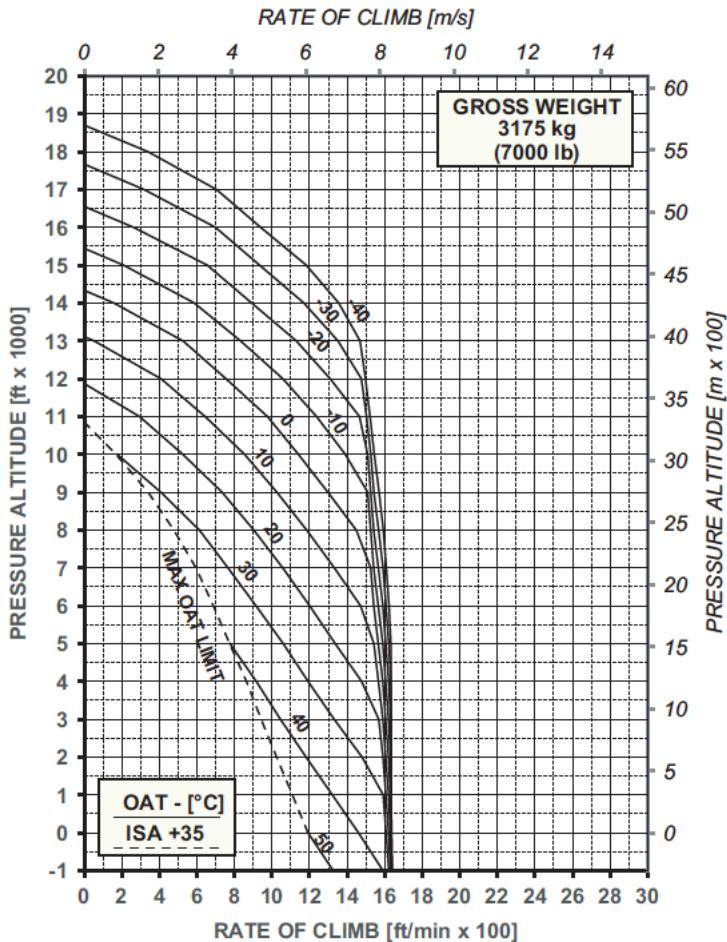
RATE OF CLIMB  
MAXIMUM CONTINUOUS POWER AEOROTOR SPEED: 100 %  
80 KIAS, DECREASE 2 kt EACH 1000 ft ABOVE Hp 10000 ft

ELECTRICAL LOAD: 200 A TOTAL



109G1560A009 rev. C

ICN-0B-C-154300-G-A0126-00007-A-03-1


Figure 3-16 Rate of Climb at Maximum Continuous Power - AEO -  
Gross Weight 2900 kgHVR ROC  
FL HV AW

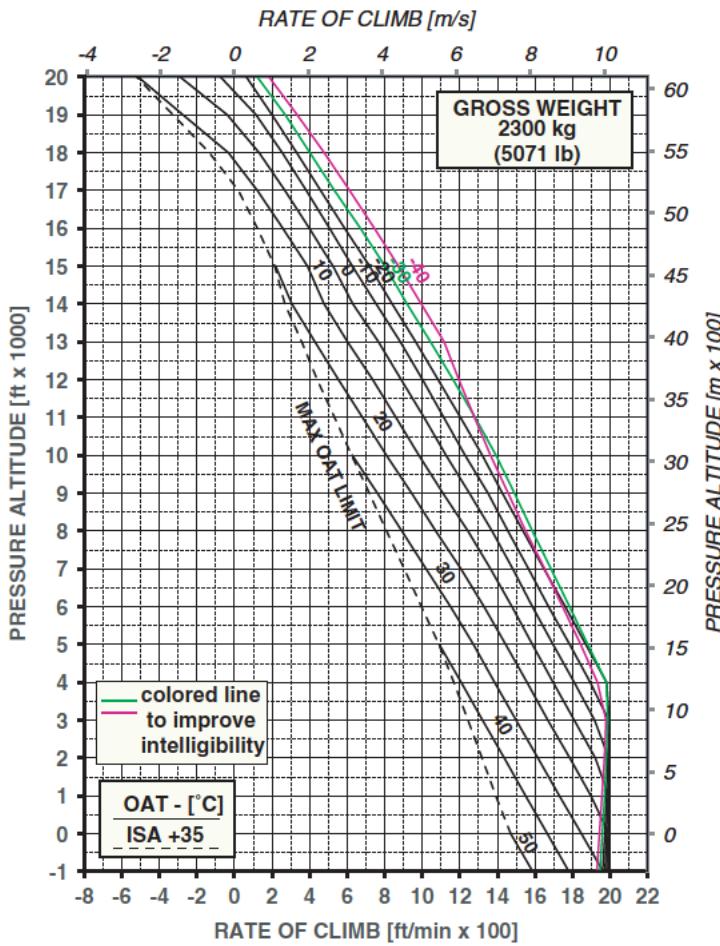
RATE OF CLIMB  
MAXIMUM CONTINUOUS POWER AEO

ROTOR SPEED: 100 %

ELECTRICAL LOAD: 200 A TOTAL

80 KIAS, DECREASE 2 kt EACH 1000 ft ABOVE Hp 10000 ft




109G1560A009 rev. C

ICN-0B-C-154300-G-A0126-00008-A-03-1

RATE OF CLIMB  
2.5 MINUTE POWER OEI

ROTOR SPEED: 100 %  
80 KIAS, DECREASE 2 kt EACH 1000 ft ABOVE Hp 10000 ft

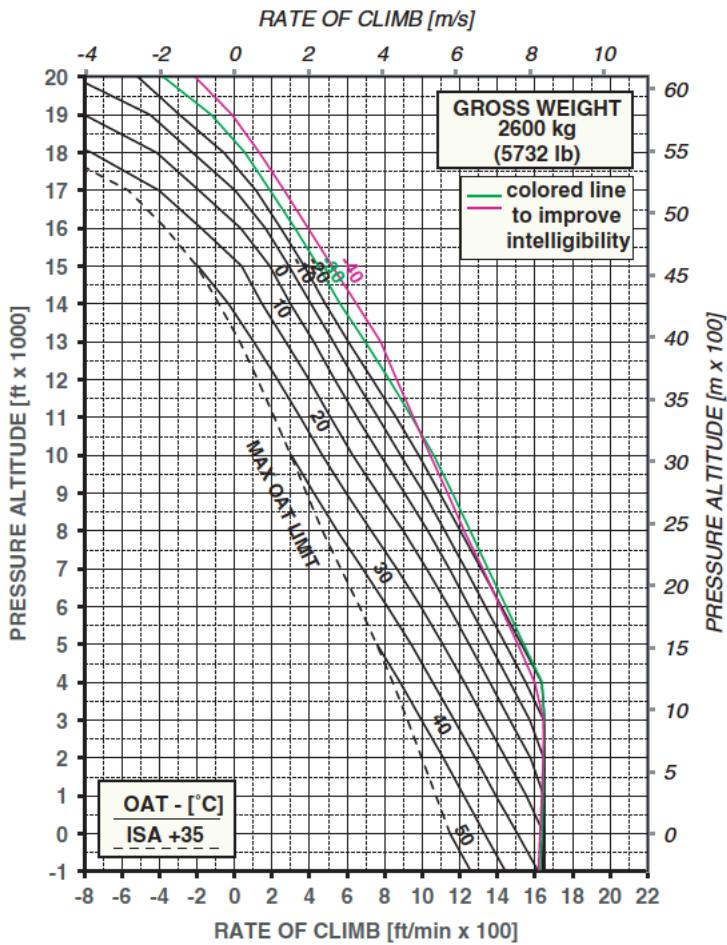
ELECTRICAL LOAD: 200 A



109G1560A009 rev. C

ICN-0B-C-154300-G-A0126-00009-A-03-1

Figure 3-18 Rate of Climb at 2.5 Minute Power - OEI -  
Gross Weight 2300 kg

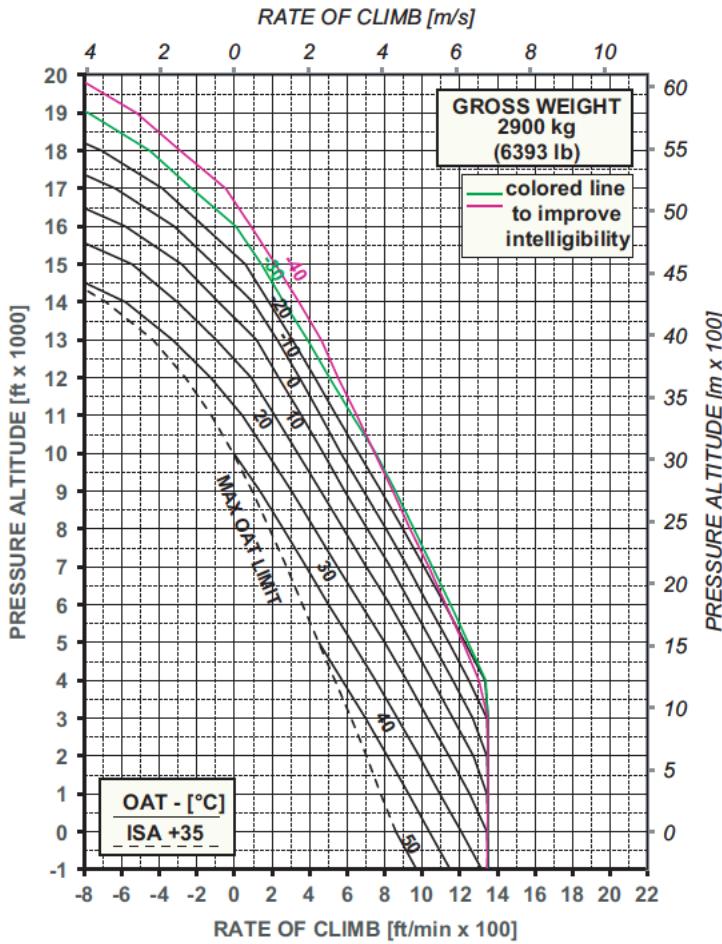

HVR ROC  
FL HV AW

RATE OF CLIMB  
2.5 MINUTE POWER OEI

ROTOR SPEED: 100 %

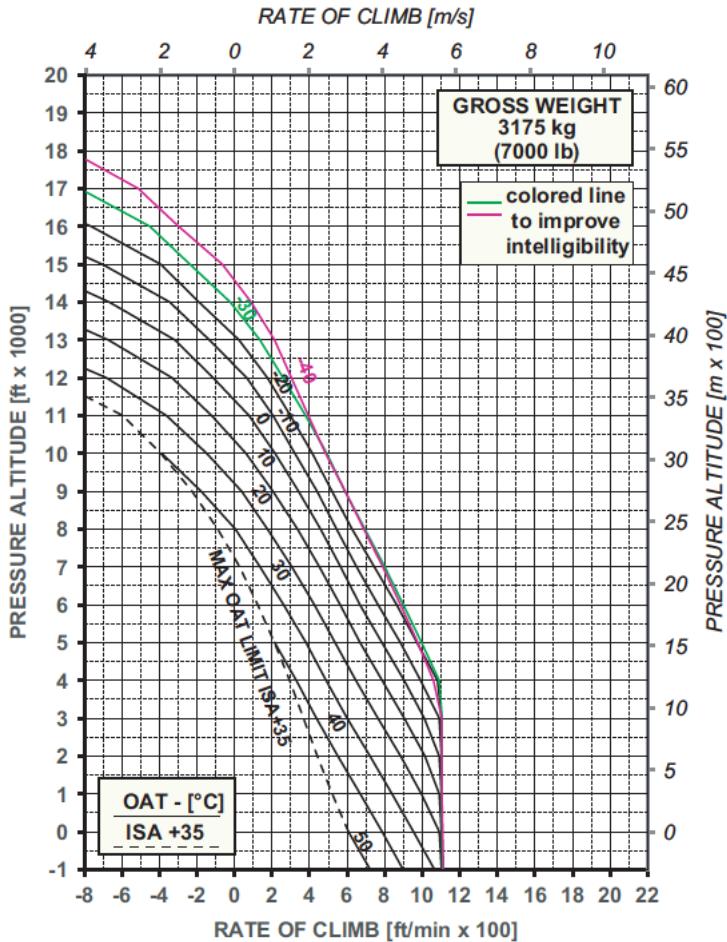
ELECTRICAL LOAD: 200 A

80 KIAS, DECREASE 2 kt EACH 1000 ft ABOVE Hp 10000 ft




109G1560A009 rev. C

ICN-0B-C-154300-G-A0126-00010-A-03-1


RATE OF CLIMB  
2.5 MINUTE POWER OEIROTOR SPEED: 100 %  
80 KIAS, DECREASE 2 kt EACH 1000 ft ABOVE Hp 10000 ft

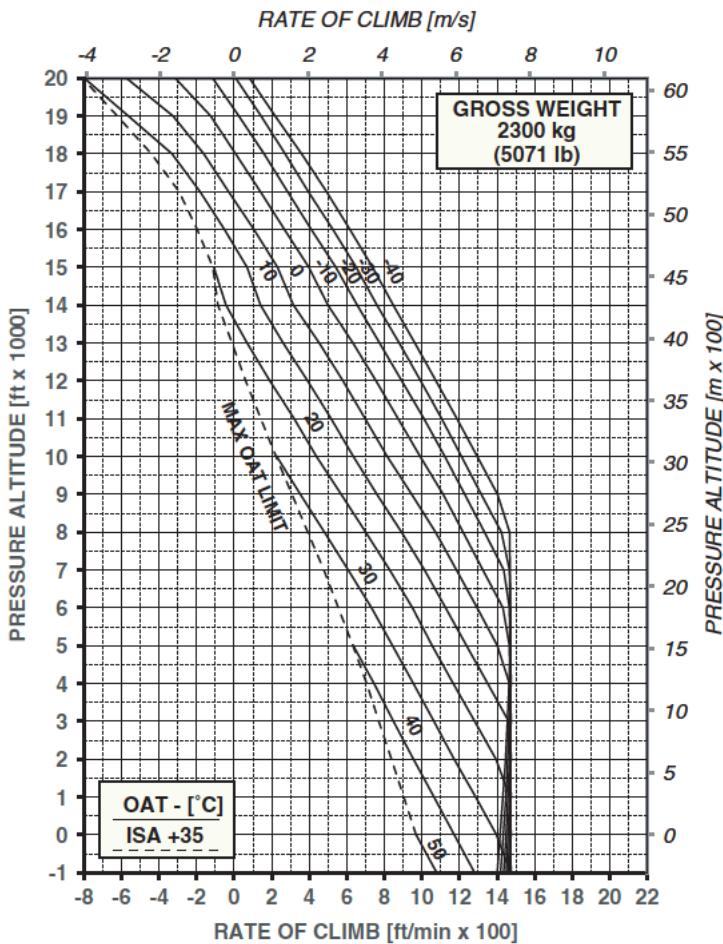
ELECTRICAL LOAD: 200 A



RATE OF CLIMB  
2.5 MINUTE POWER OEIROTOR SPEED: 100 %  
80 KIAS, DECREASE 2 kt EACH 1000 ft ABOVE Hp 10000 ft

ELECTRICAL LOAD: 200 A




109G1560A009 rev. C

ICN-0B-C-154300-G-A0126-00012-A-03-1

RATE OF CLIMB  
MAXIMUM CONTINUOUS POWER OEI

ROTOR SPEED: 100 %  
80 KIAS, DECREASE 2 kt EACH 1000 ft ABOVE Hp 10000 ft

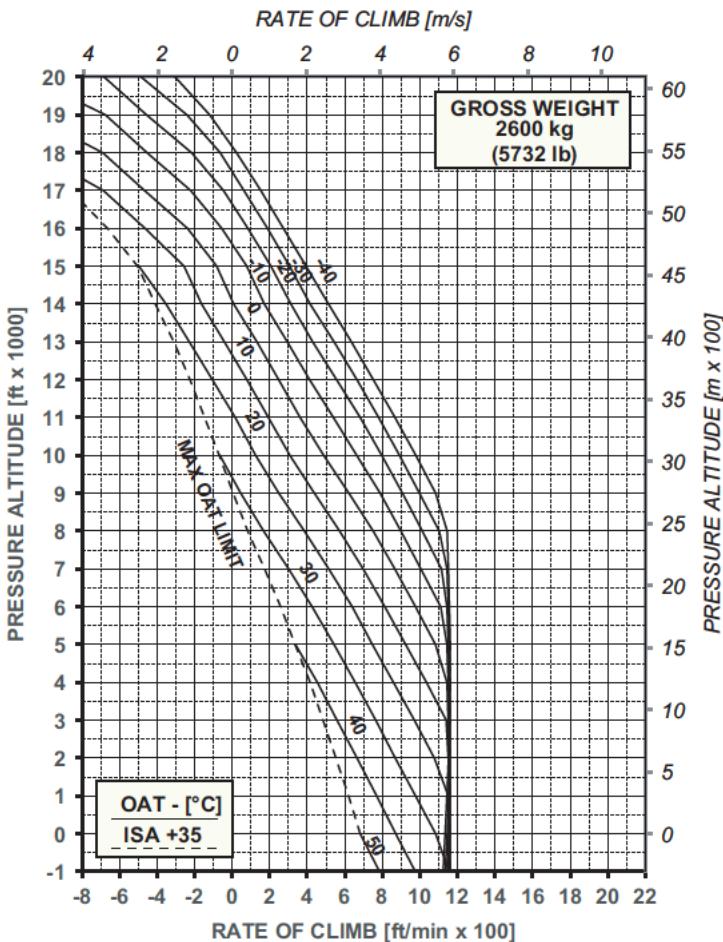
ELECTRICAL LOAD: 200 A



109G1560A009 rev. C

ICN-0B-C-154300-G-A0126-00013-A-03-1

Figure 3-22 Rate of Climb at Maximum Continuous Power - OEI -  
Gross Weight 2300 kg


HVR ROC  
FL HV AW

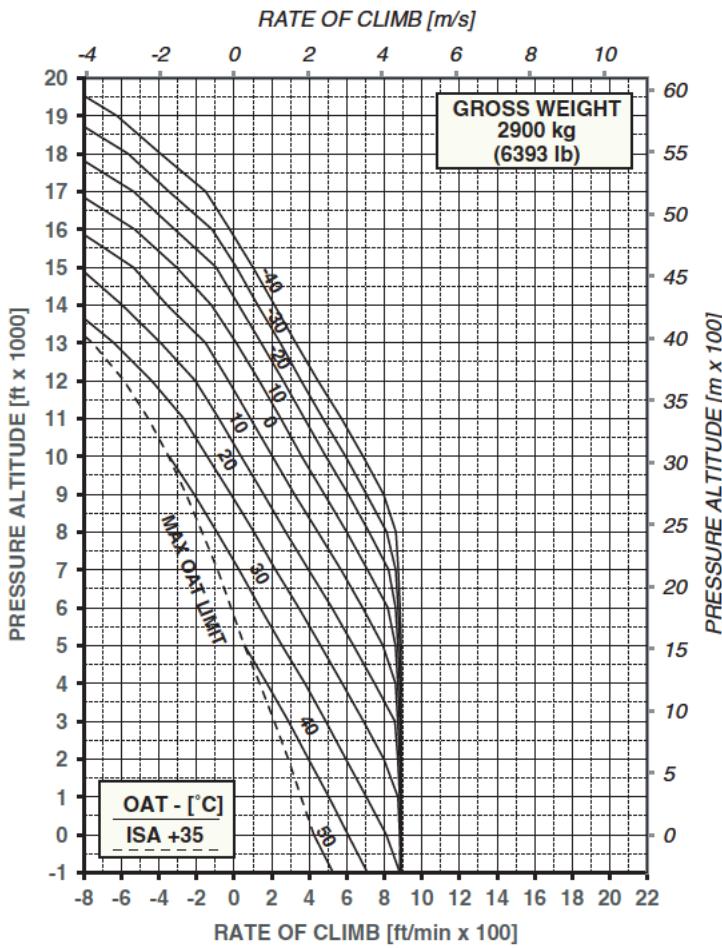
RATE OF CLIMB  
MAXIMUM CONTINUOUS POWER OEI

ROTOR SPEED: 100 %

ELECTRICAL LOAD: 200 A

80 KIAS, DECREASE 2 kt EACH 1000 ft ABOVE Hp 10000 ft




109G1560A009 rev. C

ICN-0B-C-154300-G-A0126-00014-A-03-1

RATE OF CLIMB  
MAXIMUM CONTINUOUS POWER OEI

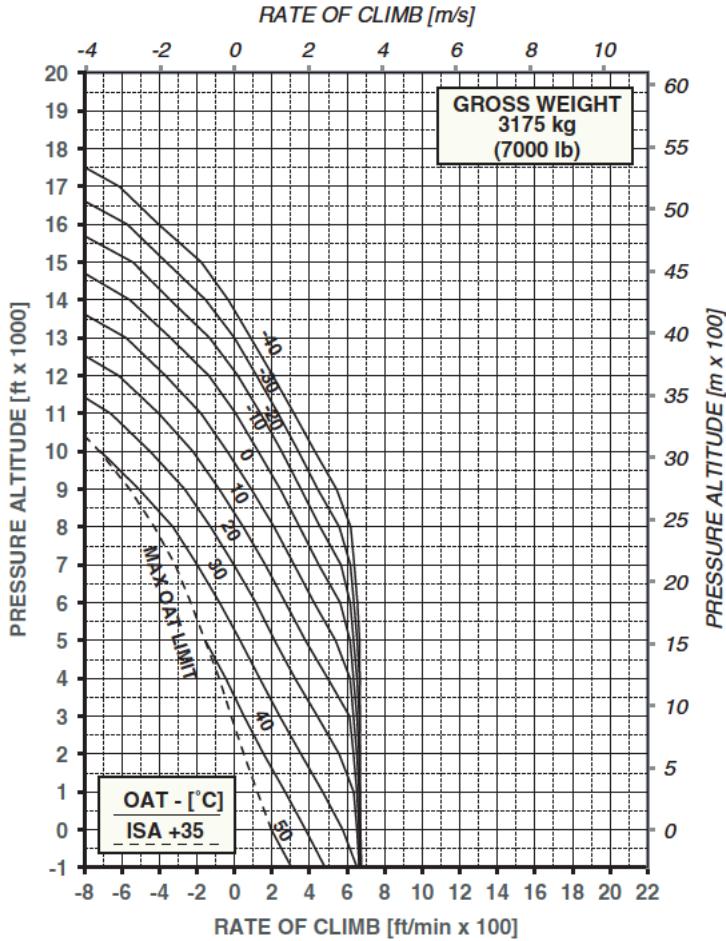
ROTOR SPEED: 100 %  
80 KIAS, DECREASE 2 kt EACH 1000 ft ABOVE Hp 10000 ft

ELECTRICAL LOAD: 200 A



109G1560A009 rev. C

ICN-0B-C-154300-G-A0126-00015-A-03-1


Figure 3-24 Rate of Climb at Maximum Continuous Power - OEI -  
Gross Weight 2900 kgHVR ROC  
FL HV AW

RATE OF CLIMB  
MAXIMUM CONTINUOUS POWER OEI

ROTOR SPEED: 100 %

ELECTRICAL LOAD: 200 A

80 KIAS, DECREASE 2 kt EACH 1000 ft ABOVE Hp 10000 ft



109G1560A009 rev. C

ICN-0B-C-154300-G-A0126-00016-A-03-1

## FUEL CONSUMPTION AT 3175 KG

| OAT<br>(°C)                | -40 | -30 | -20 | 0   | 20           | ISA + 25     | ISA + 35     |
|----------------------------|-----|-----|-----|-----|--------------|--------------|--------------|
| <b>2000 ft @ 80 KIAS</b>   |     |     |     |     |              |              |              |
| kg/h                       | 146 | 148 | 150 | 155 | 160          | 165          | 168          |
| <b>2000 ft @ 120 KIAS</b>  |     |     |     |     |              |              |              |
| kg/h                       | 165 | 169 | 172 | 181 | 188          | 196          | 202          |
| <b>2000 ft @ 150 KIAS</b>  |     |     |     |     |              |              |              |
| kg/h                       | 205 | 210 | 216 | 231 | 250          | -            | -            |
| <b>4000 ft @ 80 KIAS</b>   |     |     |     |     |              |              |              |
| kg/h                       | 142 | 144 | 147 | 152 | 158          | 161          | 164          |
| <b>4000 ft @ 120 KIAS</b>  |     |     |     |     |              |              |              |
| kg/h                       | 164 | 168 | 173 | 180 | 191          | 198          | 205          |
| <b>4000 ft @ 150 KIAS</b>  |     |     |     |     |              |              |              |
| kg/h                       | 207 | 215 | 223 | 243 | -            | -            | -            |
| <b>6000 ft @ 80 KIAS</b>   |     |     |     |     |              |              |              |
| kg/h                       | 139 | 141 | 144 | 150 | 155          | 158          | 161          |
| <b>6000 ft @ 120 KIAS</b>  |     |     |     |     |              |              |              |
| kg/h                       | 165 | 168 | 172 | 184 | 197          | 205          | 218          |
| <b>6000 ft @ 150 KIAS</b>  |     |     |     |     |              |              |              |
| kg/h                       | 215 | 225 | 236 | 270 | -            | -            | -            |
| <b>8000 ft @ 80 KIAS</b>   |     |     |     |     |              |              |              |
| kg/h                       | 136 | 140 | 143 | 148 | 155          | 157          | 161          |
| <b>8000 ft @ 120 KIAS</b>  |     |     |     |     |              |              |              |
| kg/h                       | 165 | 170 | 176 | 191 | 222<br>(TOP) | 233<br>(TOP) | -            |
| <b>8000 ft @ 150 KIAS</b>  |     |     |     |     |              |              |              |
| kg/h                       | 229 | 246 | 268 | -   | -            | -            | -            |
| <b>10000 ft @ 80 KIAS</b>  |     |     |     |     |              |              |              |
| kg/h                       | 136 | 138 | 141 | 149 | 159          | 159          | 167<br>(TOP) |
| <b>10000 ft @ 120 KIAS</b> |     |     |     |     |              |              |              |
| kg/h                       | 169 | 177 | 186 | 221 | -            | -            | -            |
| <b>10000 ft @ 150 KIAS</b> |     |     |     |     |              |              |              |
| kg/h                       | 266 | -   | -   | -   | -            | -            | -            |
| <b>12000 ft @ 80 KIAS</b>  |     |     |     |     |              |              |              |
| kg/h                       | 135 | 138 | 143 | 154 | 182<br>(TOP) | 171<br>(TOP) | -            |

| OAT<br>(°C)                | -40 | -30 | -20 | 0 | 20 | ISA + 25 | ISA + 35 |
|----------------------------|-----|-----|-----|---|----|----------|----------|
| <b>12000 ft @ 120 KIAS</b> |     |     |     |   |    |          |          |
| kg/h                       | 179 | 192 | 219 | - | -  | -        | -        |
| <b>12000 ft @ 150 KIAS</b> |     |     |     |   |    |          |          |
| kg/h                       | -   | -   | -   | - | -  | -        | -        |

## HEIGHT-VELOCITY DIAGRAMS

The Height-Velocity diagram is used to establish if, in the event of a single engine failure during take-off, landing or other operations near the surface, a combination of airspeed and height above ground exists for which a safe single engine landing on a smooth, level and hard surface cannot be assured (dangerous zone).

The Height-Velocity diagram is split in three charts:

Chart A (Figure 3-26);

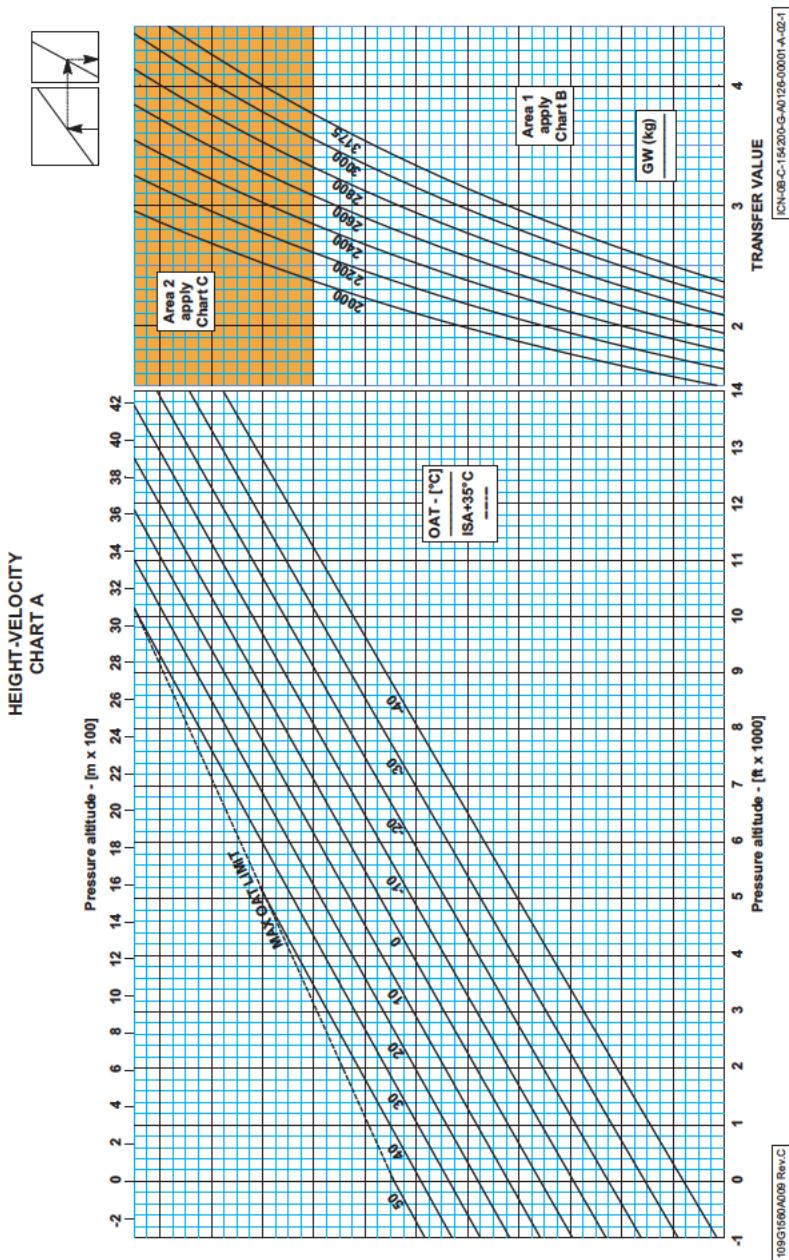

Chart B (Figure 3-27);

Chart C (Figure 3-28).

**CAUTION**

The curves below OAT -25°C apply only to the helicopter configured with Cold OperationKit (Supplement 15 of RFM).

HVR ROC  
FL HV AW



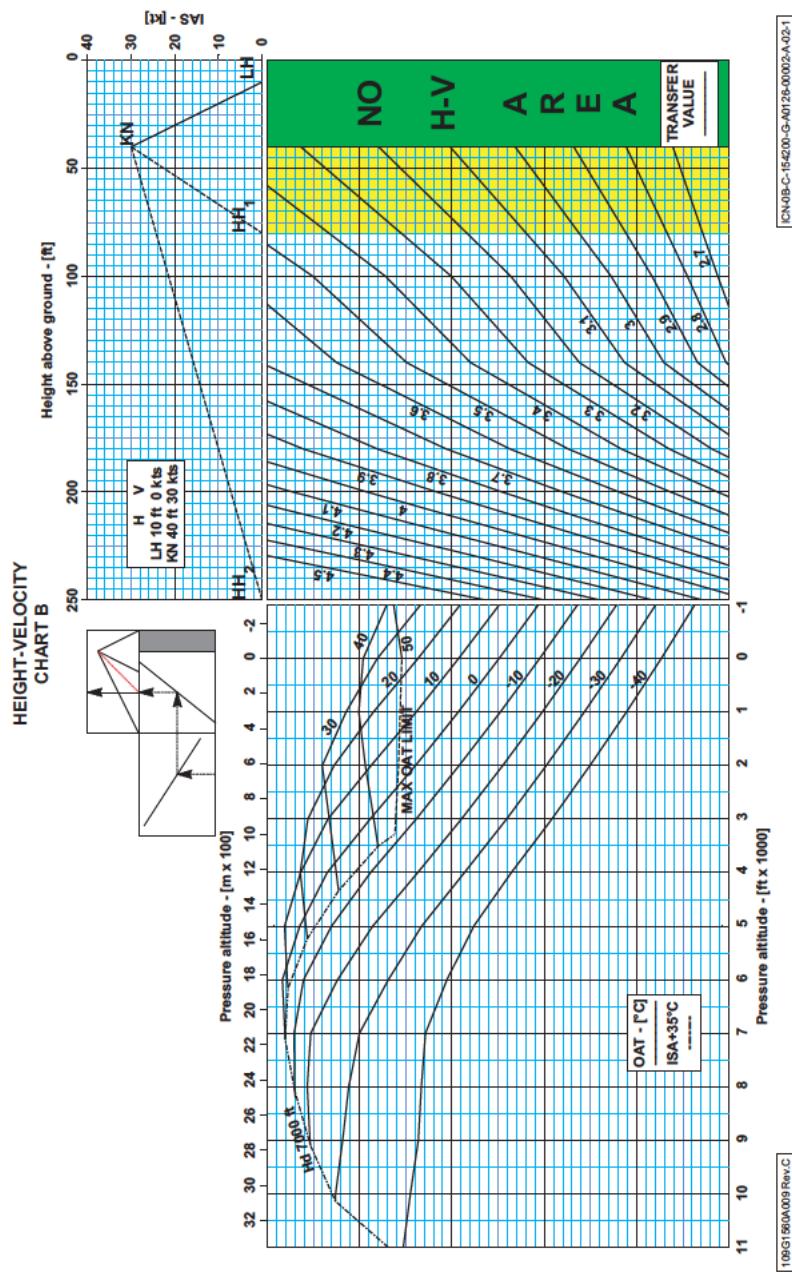
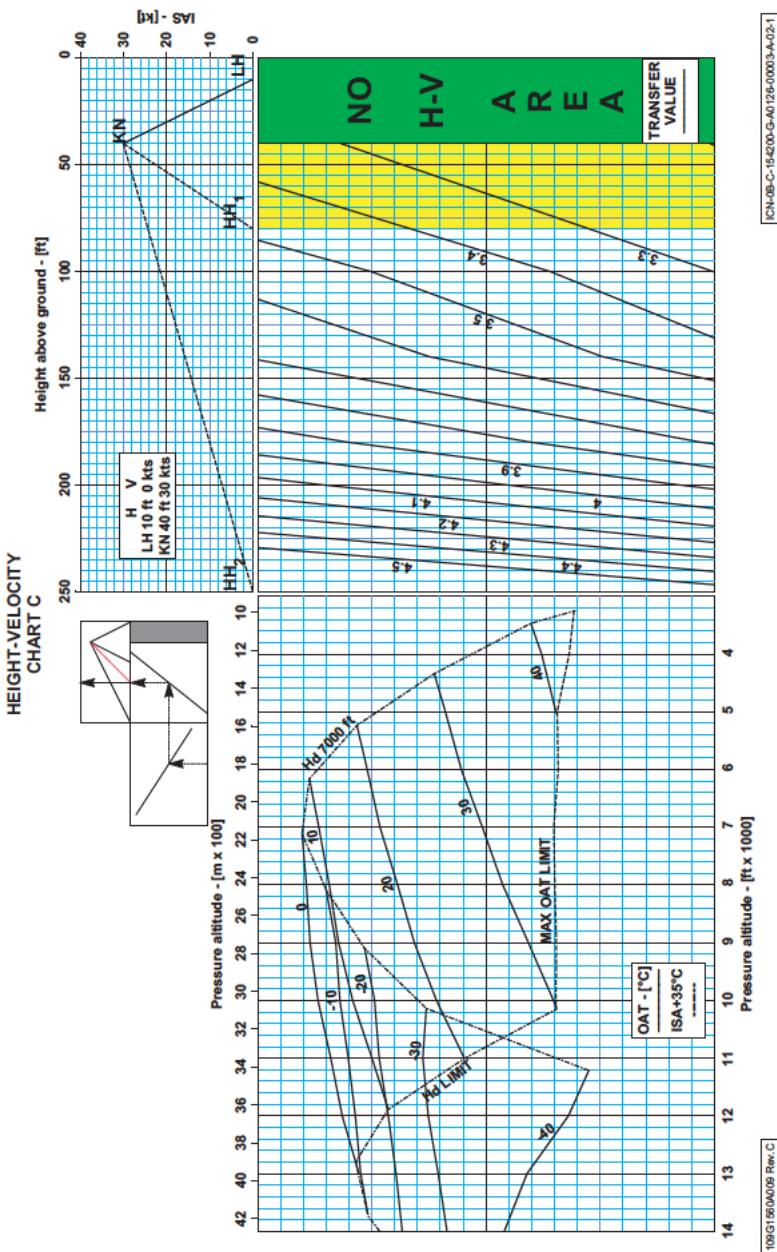




Figure 3-27 Height - Velocity Diagram - Chart B



## OPERATION VS ALLOWABLE WIND

### Note

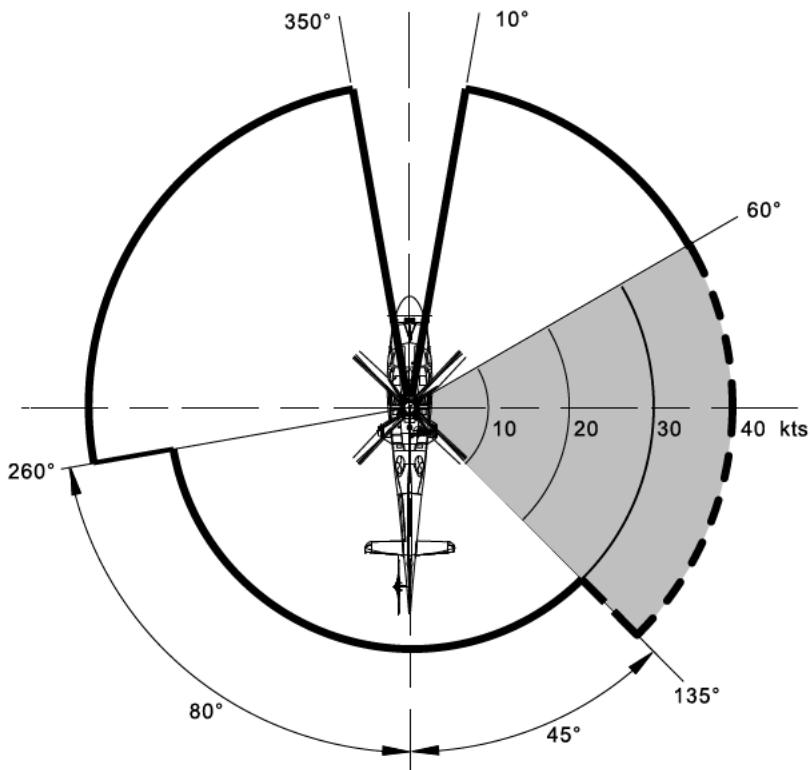
Before using Chart A and/or Chart B of this paragraph, the appropriate helicopter maximum gross weight for Hover (IGE/OGE) must be determined using the pertinent Hover performance charts.

The "Wind Ground Speed Azimuth Envelope IGE/OGE" charts define, at each altitude/OAT combination, the maximum weight and maximum allowable wind for which satisfactory stability and control has been demonstrated. Chart A (Figure 3-29) is valid up to a density altitude of 10000 ft Hd.

Maximum relative wind speed in shaded area of Chart A (from 60 to 135 degrees) is determined by Area 2 of Chart B (Figure 3-30). Maximum relative wind speed in all azimuths between 10 and 350 degrees, above 10000 ft Hd is determined by Area 1 of Chart B. Table 3-1 gives a simplified method to know the maximum wind allowed in the critical azimuths at several helicopter weights and density altitude. For more accurate evaluation refer to Figure 3-29 and Figure 3-30.

### CAUTION

The curves below OAT -25°C apply only to the helicopter configured with Cold Operation Kit (Supplement 15 of RFM).


| MAXIMUM LATERAL ALLOWABLE WIND ENVELOPE |         |         |         |         |         |
|-----------------------------------------|---------|---------|---------|---------|---------|
| ALL AZIMUTH (Simplified Table)          |         |         |         |         |         |
| Weight<br>Altitude Hd                   | 2400 kg | 2600 kg | 2800 kg | 3000 kg | 3175 kg |
| Up to 3000 ft                           | 30      | 30      | 30      | 30      | 30      |
| Up to 5000 ft                           | 30      | 30      | 30      | 30      | 25      |
| Up to 7000 ft                           | 30      | 30      | 30      | 25      | 20      |
| Up to 9000 ft                           | 30      | 30      | 25      | 20      |         |
| Up to 10000 ft                          | 30      | 28      | 20      |         |         |
| Up to 12000 ft                          | 30      | 20      |         |         |         |
| Up to 14000 ft                          | 25      |         |         |         |         |
| Up to 16000 ft                          | 20      |         |         |         |         |

<sup>\*</sup>: For a complete Allowable Wind envelope information refer to applicable RFM chart

109G1560A011 Rev.D

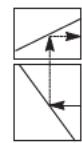
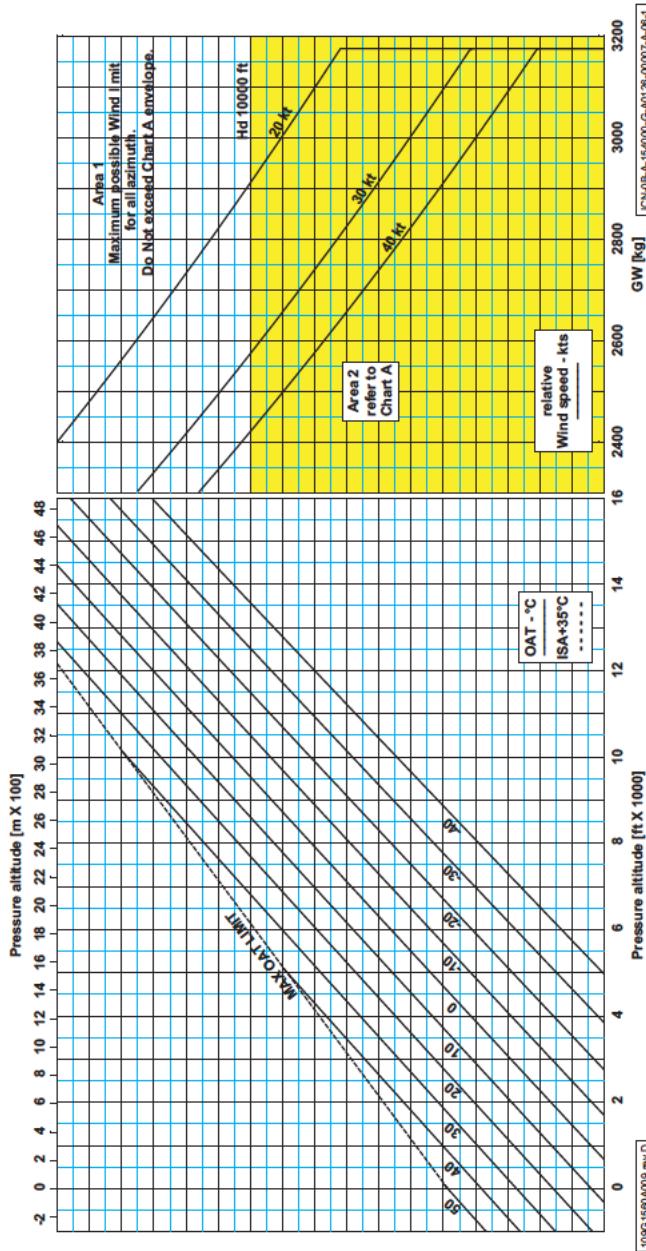

ICN-0B-D-155000-G-A0126-00003-A-02-1

Table 3-1 Simplified table

LOW SPEED CONTROLLABILITY  
CHART A

109-60-195 Rev.B

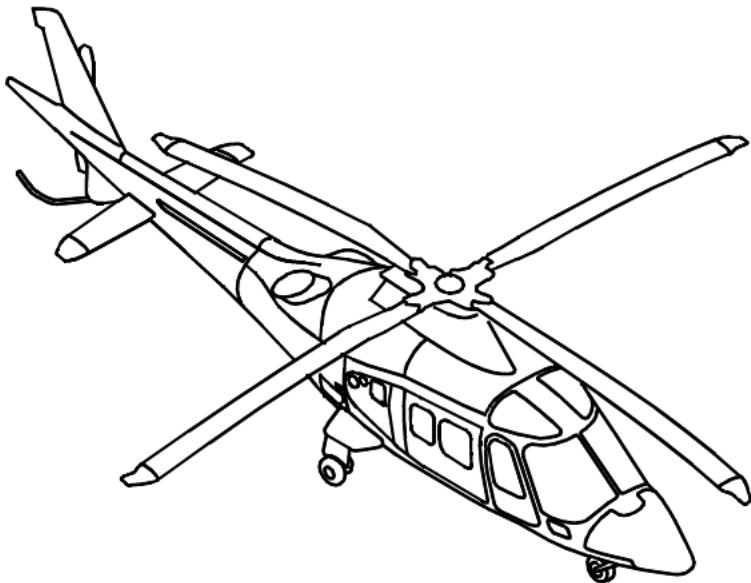
CN-0B-A-154000-G-A0126-00008-A-05-1




**WEIGHT-ALTITUDE-TEMPERATURE  
FOR LOW SPEED CONTROLLABILITY**

**CHART B**

**NOTE: ALLOWABLE GROSS WEIGHTS OBTAINED FROM THIS CHART MAY EXCEED  
CONTINUOUS HOVER CAPABILITY UNDER CERTAIN AMBIENT CONDITIONS  
REFER TO HOVER CEILING CHARTS**


ROTOR 102%



**Figure 3-30 Wind/Ground Speed Azimuth Envelope IGE/OGE -  
Chart B**

**HVR ROC  
FL HV AW**

**This Page Is Intentionally Left Blank**



# **QUICK REFERENCE HANDBOOK**

**ISSUE 2 : 04 December 2019**

**Source Document :**

RFM Document No. 109G0040A018

ISSUE B : 11 December 2009 - Rev. 21: 19 September 2019

Continuing airworthiness criteria for the AW109SP is developed and maintained by Leonardo S.p.A., who is the holder of the type certificate in the state of design.

This publication contains information proprietary to Leonardo S.p.A. Reproduction and/or resale of the information or illustrations contained herein is not permitted without the written approval of CUSTOMER SUPPORT & SERVICES - ITALY - Product Support Engineering Dept. Additional copies of this publication and/or change service may be obtained from:

Leonardo S.p.A. Helicopters  
Customer Support & Services - Italy  
Via Giovanni Agusta, 520  
21017 Cascina Costa di Samarate (VA) - Italy  
Tel.: (+39) 0331 225.036 - Fax.: (+39) 0331 225.988  
e-mail: [gestpubs@leonardocompany.com](mailto:gestpubs@leonardocompany.com)

---

## TABLE OF CONTENTS

|                                                  | Page |
|--------------------------------------------------|------|
| RECORD OF REVISIONS .....                        | iv   |
| RECORD OF EFFECTIVE PAGES .....                  | v    |
| QRH GENERAL INFORMATION .....                    | vi   |
| CONTENT .....                                    | vi   |
| FLIGHT MANUAL .....                              | vi   |
| QRH LIMITATIONS .....                            | vi   |
| QRH NORMAL PROCEDURES .....                      | vi   |
| QRH PERFORMANCE .....                            | vi   |
| QRH EMERGENCY AND MALFUNCTION<br>PROCEDURE ..... | vi   |
| TEMPORARY REVISIONS .....                        | vi   |

## RECORD OF REVISIONS

| QRH<br>REVISION<br>No. | Date       | Basis of Revision              | Notes |
|------------------------|------------|--------------------------------|-------|
| Issue 2                | 04-12-2019 | AW109SP RFM Issue B<br>Rev. 21 | -     |
|                        |            |                                |       |
|                        |            |                                |       |
|                        |            |                                |       |
|                        |            |                                |       |
|                        |            |                                |       |
|                        |            |                                |       |
|                        |            |                                |       |

### Note

For revisions of the RFM which do not affect the QRH no revision of the QRH is carried out.

## RECORD OF EFFECTIVE PAGES

| PAGE                                                               | QRH<br>REVISION N° |
|--------------------------------------------------------------------|--------------------|
| i thru vi                                                          | 0                  |
| <b>LIMITATIONS, NORMAL<br/>PROCEDURES AND<br/>PERFORMANCE DATA</b> |                    |
| 1 and 2                                                            | 0                  |
| TOC-1 thru<br>TOC-4                                                | 0                  |
| LOF-1 and<br>LOF-2                                                 | 0                  |
| 3 thru 154                                                         | 0                  |
| <b>EMERGENCY AND<br/>MALFUNCTION PROCEDURES</b>                    |                    |
| 1 and 2                                                            | 0                  |
| TOC-1 thru<br>TOC-8                                                | 0                  |
| 3 thru 204                                                         | 0                  |

---

## QRH GENERAL INFORMATION

### CONTENT

The QRH consists of 4 sections which have been grouped into two parts. The first part combines Limitations, Normal Procedures and Performance Data. The second part contains Emergency/Malfunction Procedures. The two parts are mounted back-to-back to allow quick access to either.

The various sections/systems are colour tabbed for ease and quickness of locating the page required.

A Index of Content is included at the start of each of the two parts.

### FLIGHT MANUAL

The QRH does not replace the RFM, however, all information contained in the QRH is based on the RFM. To operate the aircraft safely and efficiently, the RFM must be read and thoroughly understood.

If any conflict should exist between this QRH and the Approved RFM the RFM shall take precedence.

### QRH LIMITATIONS

The limitations have been copied from the RFM, however any conflict between the QRH and Approved RFM Limitations the Limitations in the RFM take precedence.

### QRH NORMAL PROCEDURES

The normal procedures have been copied simplified from the RFM.

### QRH PERFORMANCE

The performance data includes the Power Assurance Charts, Density Altitude, Height-Velocity, Hover Ceiling, Rate Of Climb diagrams and, in tabulated data format, the Fuel Consumption.

### QRH EMERGENCY AND MALFUNCTION PROCEDURE

The procedures have been copied from the RFM and grouped into systems. The systems are then highlighted with RED tabs for Emergency Procedures, AMBER tabs for Malfunction Procedures.

Additionally a table of Warning and Caution messages and the appropriate page number for the procedure is included at the start of each section (Emergency/Malfunction) to aid in rapid location of the correct page.

### TEMPORARY REVISIONS

Temporary Revisions are issued when immediate data is to be included in the manual. The Temporary Revision data can add to or cancel the initial data in the manual. They are numbered progressively for each section of the manual and are with red header and footer. Temporary Revision pages are not written in the "Record of Effective Pages". A complete list of active and inactive Temporary Revisions is written in the "Record of Temporary Revisions" page.